
MIT/WHOI 97-22 

Massachusetts Institute of Technology 
Woods Hole Oceanographic Institution 

^StS& 
OfTtC^ 

Joint Program 
in Oceanography/ 

Applied Ocean Science 
and Engineering 

1930 

DOCTORAL DISSERTATION 

Terrain-Relative Navigation for Autonomous 
Underwater Vehicles 

by 

Diane E. Di Massa 

tylZ'O r,.-. 

June 1997 

Approved for public releases 
Distribution Unlimited 19980505 059 



MIT/WHOI 
97-22 

Terrain-Relative Navigation for Autonomous Underwater Vehicles 

by 

Diane E. Di Massa 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 02139 

and 

Woods Hole Oceanographic Institution 
Woods Hole, Massachusetts 02543 

June 1997 

DOCTORAL DISSERTATION 

Funding was provided by Office of Naval Research Grants N00014-96-1-5028, N00014-94-1-0466 
and N00017-92-J-1714; Naval Research Underwater Warfare Center Grant N00140-90-D-1979, and 

Naval Research Laboratory N00014-92-C-6028. 

Reproduction in whole or in part is permitted for any purpose of the United States Government. This 
thesis should be cited as: Diane E. Di Massa, 1997. Terrain-Relative Navigation for Autonomous 

Underwater Vehicles. Ph.D. Thesis. MIT/WHOI, 97-22. 

Approved for publication; distribution unlimited. 

Approved for Distribution: 

^^fe^^^ 

Timothy K. Stanton, Chair 

Department of Applied Ocean Physics and Engineering 

Marcia K. McNutt 
MIT Director of Joint Program John W. Farrington 

WHOI Dean of Graduate Studies 



Terrain-Relative Navigation for Autonomous 

Underwater Vehicles 

by 

Diane E. Di Massa 

B.S., Massachusetts Institute of Technology (1989) 
M.S., Massachusetts Institute of Technology (1989) 

Mech.Eng., Massachusetts Institute of Technology (1992) 

Submitted in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

at the 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

and the 

WOODS HOLE OCEANOGRAPHIC INSTITUTION 

May, 1997 

© 1997 Diane E. Di Massa. All rights reserved. 

The author hereby grants to MIT and WHOI permission to reproduce and distrib- 
ute publicly paper and electronic copies of this thesis document in whole or in part. 

Author Jb&Lz^r^L/^..^/:^  
Joint Program in AppliecrOcean Science and Engineering 

Massachusetts Institute of Technology/Woods Hole Oceanographic Institution 
A n May 28,1997 

Certified by .\e/^.^^...^^3^SK^iJl^^.  
^__^      Dr. W. Kenneth Stewart, Jr. 

^^^^ ^>^^Z^ Thesis Supervisor 

Accepted by^rTjC^^r^^^^^^^^^..^^  
/ y^^ Professor Henrik Schmidt 

Acting Chair, Joint Committeeior Applied Ocean Science and Engineering 
Massachusetts Institute of Technology/Woods Hole Oceanographic Institution 



Terrain-Relative Navigation for Autonomous Underwater Vehicles 
by 

Diane E. Di Massa 

Submitted to the Department of Ocean Engineering on May 28, 
1997, in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in Applied Ocean Science and Engineering 

Abstract 

Navigation is a key technology for autonomous underwater vehicles (AUVs), and 
currently, it limits potential and existing vehicle capabilities and applications. This thesis 
presents a terrain-relative navigation system for AUVs that does not require the 
deployment of acoustic beacons or other navigational aids, but instead depends on a 
supplied digital bathymetric map and the ability of the vehicle to image the seafloor. 

At each time step, a bathymetric profile is measured and compared to a local region of the 
supplied map using a mean absolute difference criterion. The region size is determined by 
the current navigation uncertainty. For large regions, a coarse-to-fine algorithm with a 
modified beam search is used to intelligently search for good matches while reducing the 
computational requirements. A validation gate is defined around the position estimate 
using the navigation uncertainty, which is explicitly represented through a covariance 
matrix. A probabilistic data association filter with amplitude information (PDAFAI), 
grounded in the Kaiman Filter framework, probabilistically weights each good match that 
lies within the validation gate. Weights are a function of both the match quality and the 
size of the innovation. Navigation updates are then a function of the predicted position, the 
gate size, all matches within the gate, and the uncertainties on both the prediction and the 
matches. 

The system was tested in simulation on several terrain types using a deep-ocean 
bathymetry map of the western flank of the Mid-Atlantic Ridge between the Kane and 
Atlantis Transforms. Results show more accurate navigation in the areas with greater 
bathymetric variability and less accurate navigation in flatter areas with more gentle 
terrain contours. In most places, the uncertainties assigned to the navigation positions 
reflect the ability of the system to follow the true track. In no case did the navigation 
diverge from the true track beyond the point of recovery. 

Thesis Supervisor: W. Kenneth Stewart Jr., Ph.D. 
Title: Associate Scientist, MJT/WHOI Joint Program 



/ returned, and saw under the sun, that the race is not to the swift, 
nor the battle to the strong, neither yet bread to the wise, nor yet 
riches to those of understanding, nor yet favor to those of skill, but 
time and chance happen to us all. 

King Solomon 
Ecclesiastes 9:11 
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Chapter 1 

Introduction 

There are a variety of sensing platforms available for use in the ocean. These include 

surface ships, towed sleds, manned-submersibles, remotely operated vehicles, anchored or 

free-floating buoys, and bottom-mounted instrumentation. Each of these systems has its 

place in oceanographic research, but deployment, operation, and recovery can be 

expensive, and their usefulness can be limited in undesirable ways. For some applications, 

an autonomous underwater vehicle (AUV) could prove to be less costly in time, effort, and 

money, while at the same time providing better, more reliable data. 

Autonomous underwater vehicles are robotic submersibles that have their own on- 

board computers and power supply. They are untethered, free-swimming vehicles capable 

of making and executing decisions, without any human interaction. AUVs are particularly 

suited for missions that involve underwater inspection, observation, surveying, 

monitoring, mapping, or in situ data analysis. They are also very useful in hard-to-reach 

places such as at great depths or under ice. There are over 50 AUVs that have been built 

and tested, dating back to 1963 [Nodland]. Surveys of present and former AUVs can be 

found in [Bellingham 1992b; Bergem; Busby]. 

This introduction presents some potential applications and then discusses some of the 

key technologies for enabling AUVs to do useful work. A critical technology is 

navigation, the focus of this thesis. This chapter establishes the research area in which my 

work contributes. 
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1.1 Applications of AUVs 

To date, the number of successful and useful scientific or engineering missions 

completed by AUVs is very small, but the potential is very large. AUV missions fall into 

several categories: water column, seafloor, search, inspection, fishery related, and military 

[Bellingham 1992b]. Water column surveys collect data on temperature, conductivity, 

turbidity, turbulence, and other ocean properties. For example, AUVs can be used to track 

tracers (dyes) and monitor deep-water diffusion or water transport to aid physical 

oceanographic research. They can also monitor oxygen and pH levels in lakes, ponds, and 

estuaries, or explore areas with minimal access, such as water-filled volcanic craters. They 

can also evaluate the extent of dangers caused by chemical spills. 

Seafloor survey missions can be geologically based and designed to image and map 

the bottom or to take rock, mineral, or sediment samples. AUVs can also be used to deploy 

and retrieve oceanographic instrumentation, monitor marine waste-disposal sites, and 

conduct fate-of-pollutant studies. 

In search missions, AUVs can use visual or sonar techniques to seek out objects or 

locations of choice. Search missions also include detection and investigation of magnetic 

signatures for object location and identification. Wreck discovery and localization are also 

important search missions for historical, archeological, and salvage purposes. Disabled 

submarine location for rescue and recovery is also a search mission. 

There are many possible applications for inspection and maintenance. AUVs might 

tend to underwater structures such as off-shore oil platforms, pipelines, cables, well-heads, 

tower bases, or dams, collecting information or making simple repairs. They could inspect 

ship hulls or water-filled areas of ships for structural integrity or to remove bio-fouling. 
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Maintenance of artificial reefs, sewage outfalls, or nuclear waste sites are other 

applications. Neutralizing toxic pollutants or rapid-response to potentially dangerous 

wrecks are also possibilities. 

AUVs could aid the fishing industry by observing fishing gear in situ or assessing fish 

stocks. They can also be used to monitor fish behavior and track migratory patterns or 

identify potential new fishing sites. 

Many military applications are possible for AUVs, such as independent patrolling for 

surveillance and data collection in sensitive areas. AUVs could be used for mine hunting, 

identification, and elimination, or as decoys in antisubmarine warfare or acoustic targets 

for military training and exercises. More offensively, they could lay mines or participate in 

cooperative attacks. 

1.2 Key Technologies 

The applications above are only some of the AUV missions which have been 

proposed, but to achieve these missions, several key technologies must first be addressed. 

These include the power source, the propulsion system, the high- and low-level control 

systems, and the navigation system. The mission specific sensors, such as a mapping sonar 

or temperature and conductivity probes, are additional technological requirements. Each 

of the core technologies is equally important to successful operation of the AUV. 

The main limiting factor for AUV mission time is the power source. Currently, 

research is being conducted to evaluate and develop a variety of power sources such as 

fuel cells, seawater batteries, lithium batteries, etc. [Rao et al.; Walter; Willen]. There are 

also studies concerned with minimizing the amount of power drawn by a subsystem by 
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putting it to sleep when it cannot provide useful data or is not needed for a portion of the 

mission [Bradley]. 

The propulsion system is a critical component for the maneuverability of the vehicle. 

Some AUVs have the ability to hover, make sharp or stationary turns, or move 

independently in the vertical direction. For some missions, these capabilities are very 

important, but they tend to require a more elaborate propulsion system. Other missions, 

such as some surveys, do not require such difficult motions and can have simpler 

propulsion and maneuverability systems. 

Considerable research has been done on both low- and high-level control systems 

[Turner; Uhrich and Walton; Watkinson et al.; Xu and Smith]. The high-level systems 

direct the mission by making larger decisions about goals and paths. This information is 

then passed to the low-level controller, which generates the specific commands to achieve 

the goals with the best possible performance. Different high- and low-level controllers are 

better suited for different vehicle designs and mission requirements. 

This thesis is concerned solely with the navigation system. Navigation in general 

terms is the science of plotting, ascertaining, or directing the course of oneself or one's 

vessel. To successfully navigate from place to place, the three basic questions that must be 

answered are: Where am I?, Where am I going?, and How shall I get there? [Leonard; 

Leonard and Durrant-Whyte]. The first is the most fundamental localization question, and 

it is the purpose of this work to provide a method for answering it. The other two questions 

usually involve interaction between the high-level decision-making process and the low- 

level command-execution process. Some systems take a unified approach to navigation, 

where a high-level process integrates mission goals with path planning and obstacle- 
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avoidance processes to optimize one or several parameters, such as maximum coverage or 

minimum path. This thesis, however, does not take a unified approach to navigation and 

addresses only the localization question. 

There are many different types of navigation being researched for use on AUVs. Some 

systems are based on techniques developed for terrestrial mobile robots and some are 

adaptations of techniques that have been used for surface ships. A few are discussed in 

Chapter 2, but the focus of this thesis is a bathymetric, terrain-relative positioning system. 

Terrain-relative navigation has been used in several ways for vehicles traveling over 

land. One impressive application is the cruise missile, which updates its position 

periodically using stored maps of small areas between the launch and target sites. 

Bathymetric navigation has been discussed for surface vessels for over 25 years [Cohen], 

but it has yet to be exploited to full potential because of the lack of accurate maps of the 

ocean floor. In fact, only recently have we discovered that approximately 80% of the 

seafioor contains interesting bathymetric features, which may have enough variability to 

support bathymetric navigation [Dyer]. Of course, navigation will still be difficult in the 

flat areas of plateaus and the abyssal plains, but the abundance of seamounts, canyons, 

knolls, ridges, trenches, banks, rises, slopes, shoals, and troughs may provide sufficient 

relief for navigational purposes. Qualitatively, the greater the bathymetric variability and 

the finer the map resolution, the more distinct any piece of bathymetry will be. 

Consequently, the more accurate navigation is likely to be. This is discussed in more detail 

in later chapters. 

Bathymetric navigation is dependent on the availability of a sufficiently accurate map 

during the mission, and much work is being done to provide them [Blackington et al.; de 
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Moustier and Matsumoto; Kamgar-Parsi et al.; Singh; Singh et al.; Stewart 1988; Stewart 

1991]. In some cases, this means developing and improving techniques to process data 

taken by available sensors and to produce a map with an explicit knowledge and 

understanding of its accuracy. In other cases it means developing new sensors that can 

provide more accurate data from the start. This thesis does not address the issues of sensor 

design, sonar processing, or map building, but instead assumes that one of the available 

procedures has already provided a digital bathymetric map with known accuracy and 

resolution. The map may have a high level of uncertainty that will result in less precise 

positioning, but it is sufficient to have the map and to know what that uncertainty is. 

The major contribution of this work is the development of a terrain-relative navigation 

system for AUVs that considers multiple location measurements at a single time step and 

explicitly represents the localization uncertainty at all times. The system incorporates 

data-association techniques that are usually used for target tracking and adapts them to 

this application. Image-processing algorithms are used to obtain the map-matched position 

measurements and to enable the necessary calculations to be completed without 

prohibitive computational demands. The navigation system is scale-independent and will 

operate successfully using maps with a wide range of resolutions. Also, the system uses 

the uncertainty on the map in the localization algorithms, so that highly uncertain maps or 

maps with varying degrees of uncertainty can be used. The system can be used for any 

application discussed in Section 1.1, provided that a bathymetric map is available and that 

the map resolution is sufficiently fine to support the navigation accuracy needed for the 

specific mission. 
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1.3 Document Organization 

Chapter 2 discusses a variety of research in the field of underwater vehicle navigation. 

Presented is a brief summary of navigation systems that have been suggested, researched, 

and tested for AUVs. This chapter also introduces terrain-relative or bathymetric 

navigation by citing related work, particularly that on the cruise missile and at the 

Norwegian Defense Research Establishment. 

Chapter 3 presents the two basic algorithms of the terrain-relative navigation system. 

The matching algorithm compares the measured bathymetric profile to the supplied map 

for a defined search area. Matches are ranked by the mean absolute difference (MAD). An 

intelligent, adaptive-search method using a coarse-to-fine algorithm with a modified beam 

search is employed to reduce the computational requirements for determining good 

matches. The updating algorithm, grounded in the Kaiman Filter framework, consists of a 

Probabilistic Data Association Filter with Amplitude Information (PDAFAI) that weights 

each accepted match according to the value of the MAD and the size of the innovation. A 

best estimate with uncertainty (covariance matrix) is calculated for each time step. 

Chapter 4 discusses the interactions between the matching and updating processes 

presented in Chapter 3. The navigation uncertainty is used to determine the search range, 

and the error values of the accepted matches are used to calculate the probabilities of 

detection and false alarm which affect the match weighting. The measurement covariance 

on the matches affects both the position estimate and covariance and is determined a priori 

by direct matching of noiseless data to the available terrain map. 

Chapter 5 presents simulation results for five navigation tracklines across varied 

terrain of deep-ocean bathymetry. Results are presented both in pixel coordinates, to 
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emphasize the scale-independent nature of the system, and in actual dimensions (meters), 

to quantify success numerically with a physical parameter. The results vary depending on 

the terrain in which the profiles were taken; however, the system never lost track and the 

uncertainties were always bounded. 

Chapter 6 gives the conclusions drawn by the data produced for Chapter 5. Methods 

for improving the terrain-relative navigation system are discussed, along with further 

directions for research in this area. 
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Chapter 2 

Underwater Vehicle Navigation 

Many navigation technologies are possible for use on an AUV. Some require accurate 

knowledge of the vehicle state, and others are dependent on a reliable means of 

communication underwater. Two broad categories of navigation are internal and external 

systems. Internal navigation systems do not measure position, but rather determine 

location internally by integrating velocities and/or accelerations. External systems 

determine positions relative to a property or feature of the environment. This chapter 

categorizes and discusses many navigation methodologies that have been used for AUVs 

and introduces related work in terrain-relative navigation. 

2.1 Internal Navigation 

Internal systems navigate using relative information only. They require accurate 

knowledge of the vehicle state and depend on sensors to provide measurements of the 

derivatives of the state. Examples of internal navigation are dead reckoning and inertial 

navigation. 

2.1.1 Dead Reckoning Navigation 

Dead reckoning is the most fundamental of all navigation systems and requires the 

least amount of information. It simply updates the position by using a measured velocity 

vector (magnitude and direction). Unfortunately, the error associated with dead reckoning 
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increases with time, and there is no built-in method for reducing this error. Depending on 

the sensors used and the specific vehicle mission, the navigational error can grow rapidly 

to the point where either the mission will not produce useful data or it will not be 

achievable at all. 

Recently, the cost and size of Doppler velocimeters have been reduced to a level where 

integration into an AUV has become more practical. Dopplers can provide very accurate 

velocity measurements under the proper conditions, but still have drift rates that preclude 

good navigation over time. Relative-position errors are typically on the order of 1% of the 

distance traveled [Bellingham 1992a]. Another problem that can occur with Dopplers is 

the loss of bottom track. 

2.1.2 Inertial Navigation 

Inertial navigation systems are also in the internal navigation classification, but instead 

of velocities, accelerations are measured and integrated twice to give position. Generally, 

inertial systems produce more accurate navigation than dead-reckoned systems. As with 

Acoustic Doppler Current Profilers (ADCPs), the size and cost of inertial measuring 

packages have recently been reduced so that their use on an AUV is more practical. Drift 

rates of medium- and high-accuracy inertial navigation systems are roughly 1 nmi/hr and 

0.25 nmi/hr, respectively [Foxwell and Hewish]. 

2.1.3 Recursive Navigation 

Typically a Kaiman Filter is used in all types of navigation so that a best estimate of 

position can be made while accounting for and explicitly representing the uncertainties on 

both the state estimate and the measurements. [Leader] developed an internal navigation 
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system that uses measurements from both an ADCP and an inertial measurement unit to 

achieve localization with an Extended Kaiman Filter. He shows that if the filter is designed 

properly, to account for real-life complications, reasonably successful navigation can be 

obtained for a vehicle that is not maneuvering in a complicated fashion. 

The Kaiman Filter framework is actually a quite common technique in both terrestrial 

mobile robot and AUV navigation, because a vehicle will typically use both internal and 

external navigation systems. The internal system provides the predicted location by 

integrating measurements of other states, and the external system provides a direct 

measurement of location. Chapter 3 presents the Kaiman Filter in detail. 

2.2 External Navigation 

External navigation requires knowledge of, or the measurement of, something external 

to the vehicle. Included in this larger category are electromagnetic, optical, acoustic, and 

geophysical navigation systems. 

2.2.1 Radio Navigation 

Surface vessels make extensive use of Global Positioning Systems (GPS or 

Differential GPS), which depend on the receipt of electromagnetic radiation. 

Unfortunately, radio waves are attenuated quickly in seawater and can only be used at very 

close ranges. It is possible for the AUV to surface periodically to obtain a GPS fix, as 

naval submarines do, but there are several disadvantages to this [Kwak et. al]. For an AUV 

to use a form of radio navigation, it must interrupt its mission, expend time and energy 

surfacing, risk its safety for up to a minute on the surface getting the fix (which is 

25 



especially dangerous if near shore or in a shipping channel), then expend additional time 

and energy submerging to resume the mission. Even if an extremely accurate fix is 

obtained, the vehicle location uncertainty can grow significantly during descent before the 

mission is ever resumed. 

2.2.2 Optical Navigation 

Optical systems have transmission-loss problems similar to those of electromagnetic 

systems [Chantier et al.]. Navigation is lost as soon as visibility of the surrounding 

environment becomes poor, which usually happens at very short ranges. With optical 

systems, the AUV must carry an on-board light source, associated electronics, and the 

power to generate sufficient light. These power requirements can be substantial even for 

close ranges, as so much of the light is dispersed, absorbed, or reflected away from the 

video device. Use of a blue or green laser can increase the altitude, but for most 

applications, this distance is still unacceptably small. Nevertheless, research is still being 

done in the area of determining relative motion by using a sequence of images taken by a 

CCD camera [Aguirre et al.]. 

2.23 Acoustic Navigation 

Acoustic navigation is the most widely accepted form of AUV navigation, and a 

variety of systems have been both researched and tested. Most require an engineered 

environment, meaning that something has been added to the environment to aid navigation 

[Gat]. Usually, the engineering takes the form of one or more acoustic beacons. Although 

the principles behind each of the acoustic navigation schemes is quite different, they are 

all susceptible to the same general sonar problems: multipath, signal refraction, 
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reverberation, 3D spatial variation of the sound speed, shipping noise, biological noise, 

vehicle self noise, wind/water interaction, and sensor accuracies dependent on hydrophone 

spacing and source frequencies [Calcar]. 

2.2.3.1 Short-Baseline Navigation 

Short- (SBL) and ultra-short-baseline (USBL) systems are used to determine the 

direction of propagation of the acoustic signal and therefore the direction vector to a single 

beacon. Short-baseline navigation uses multiple hydrophones mounted on the AUV with 

moderate separation and measures the differential time of arrival of a single pulse. Ultra- 

short-baseline navigation systems [Chen and Alvarado; Tracey] use hydrophones with 

very small separation and measure the phase difference of the carrier pulse at two or more 

locations. Ranges to the single beacon are calculated by one- or two-way travel times, 

depending on clock synchronization and whether or not the vehicle has a source. 

2.2.3.2 Long-Baseline Navigation 

Long-baseline (LBL) navigation systems use an array of acoustic beacons separated 

by a range of 100 m to a few kilometers [Bernsten; Calcar; Di Massa; Geyer et al.]. The 

vehicle determines its position by listening to the pulses emitted from the beacons and 

recording the arrival times. The locations of these beacons must be provided, and the 

vehicle must be able to detect and distinguish between their signals. Currently, long- 

baseline navigation is the most widely used technique for AUV localization. 

The two major types of long-baseline navigation are spherical and hyperbolic. In 

spherical navigation, the vehicle interrogates the array by emitting its own pulse then 

listens for the responses from the beacons. By measuring the elapsed time and knowing 
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the sound-speed profile, the range to each beacon can be determined. Each range 

measurement confines the vehicle to be on the surface of a sphere centered at the beacon 

and with radius equal to the range. The point at which all spheres intersect is the vehicle 

position. Very accurate navigation 0(<1 m) is possible with this system, but it does require 

the deployment and calibration of the beacon array. Some commercially available long- 

baseline navigation systems [Marquest], which use higher bandwidth, claim centimeter 

accuracy, but this is only valid in the best of conditions. 

In hyperbolic long-baseline navigation [Bellingham et al. 1992; Di Massa], the vehicle 

does not interrogate the array, but instead listens passively to the synchronized pulses 

emitted by the beacons. Hyperbolic acoustic navigation is patterned after LORAN, a radio 

navigation system developed during World War II by the MIT Radiation Laboratory 

[Pierce; Pierce et al.]. Unlike spherical navigation, hyperbolic navigation measures the 

differential arrival times of the beacon signals to constrain the vehicle location to be on 

hyperboloids instead of spheres. Often, a depth measurement is added to aid in resolution. 

An advantage of using hyperbolic acoustic navigation is that multiple vehicles can operate 

at the same time without interference. Another advantage is that hardware and power 

requirements on the vehicle are reduced because the vehicle does not interrogate the array. 

Also, somewhat clandestine operations can be undertaken because the vehicle listens only 

and does not give away its own position. However, hyperbolic navigation is usually less 

accurate 0(3-5 m) than spherical navigation, and the accuracy is highly dependent on the 

location within the array. [Deffenbaugh 1997] compares the accuracies of these systems in 

greater detail. 
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A major disadvantage of long-baseline acoustic navigation is that the calibration of the 

array, which must have accuracy better than the desired vehicle location accuracy, can be a 

major undertaking, both initially and during periodic maintenance. The cost in time, 

equipment, and effort used can be expensive, especially if many beacons are used in a 

fairly deep area far from shore. The vehicle also has a reduced level of autonomy because 

it must stay within the array. Another important issue that can arise is the loss of 

navigation in shadow areas, regions acoustically unreachable due to the local topography. 

Over ranges greater than a few kilometers, variations in the sound speed can 

complicate the relationship between range and travel time, which leads to reduced 

accuracy of most long-baseline navigation systems. [Deffenbaugh 1994] has explored the 

possibility of using a ray-tracing model of sound-speed propagation for long-range AUV 

navigation. His method associates signal arrivals with specific ray paths, and path 

inversion provides vehicle position. This is especially useful in high-multipath 

environments, such as near bottom or under ice. Preliminary tests with this system using 

multipath matching has produced positional errors of a few meters for ranges up to 5 km. 

However, there is an important practical consideration that limits the implementation of 

this system. It is difficult to mount on an AUV a receiving array that measures ray arrival 

angles accurately enough to produce good navigation. 

2.2.4 Geophysical Navigation 

Recently there has been an increased interest in geophysical navigation systems that 

use gravity, magnetics, and bathymetry as navigational aids. In most cases this requires a 

priori maps of these characteristics. Consequently, it is appropriate to discuss maps before 
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proceeding. However, although map-building is a very important and broad area of 

research [Ayache and Faugeras; Connell; Elfes; Engleson and McDermott; Hebert; 

Kuipers et al.; Langer and Hebert; Singh; Stewart 1988], it is not the purpose of this 

research to construct maps, so this discussion is brief. 

When using a map, the features or characteristics within should be directly related to 

the purpose for which the map is created. The map detail should also be dictated by the 

intended application as well as by the accuracy of the available measurements, the storage 

requirements, and the time available for data manipulation [Cox and Wilfong]. Generally, 

map representations are either continuous or feature-based. Continuous representations 

have values of the parameters of interest available or calculable at all times. These include 

splines defined by the parameter values [Dierckx; Guibas and Ramshaw; Tuohy] or grid- 

based representations where there is a parameter value for each point of the grid and 

interpolation between the grid points is possible [Elfes; Hunter and Steiglitz; Matthies and 

Elfes; Moravec and Blackwell]. Feature-based representations identify important features, 

landmarks, or characteristics of the environment [Kuipers and Byun]. These can be 

extremal points, such as minima or maxima [Orser and Roche], or physical features such 

as walls or intersections [Drumheller; Leonard]. 

When using maps for navigation, it is common to engineer or seed the environment 

with navigational aids, such as the acoustic beacons mentioned above. These aids become 

features. However, for geophysical navigation, one could engineer the environment by 

placing objects within it or exploit its natural structure and use a continuous 

representation. 
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2.2.4.1 Gravitational Navigation 

The earth's gravitational field varies with its surface structure, density, and thickness, 

and it is theoretically possible to use either gravity variations or anomalies for navigation. 

[Jircitano et al.] state that gravity-based systems have been successfully used on land, 

aircraft, and sea surface vessels. They also present simulation results for AUVs and predict 

success if a quality gravity gradiometer is used. However, it is not yet clear whether 

bounded long-term autonomous navigation is possible. 

2.2.4.2 Magnetic Navigation 

Geomagnetic position may be one of nature's best navigational schemes, as some 

research suggests that birds, fish, and other animals use magnetic intensity as a navigation 

aid [Waterman]. Magnetic anomalies occur naturally in the earth's crust but can also be 

generated by man-made objects; both produce 3D spatial magnetic variations, [Parker and 

Heustis; Polvani; Tuohy; Tyren 1982; Tyren 1987]. The field variations can be detected 

passively to enable a variety of missions including pipeline following and mine hunting. 

Essentially, the minimum and maximum values of the magnetic anomalies can be viewed 

as magnetic beacons. [Foxwell and Hewish] also indicate that pre-positioned magnetic 

members may enable the vehicle to reset its navigational uncertainty and assist in 

maintaining bounded navigational errors. 

2.2.4.3 Bathymetric Navigation 

The third geophysical parameter of interest is the bathymetry. Although terrain 

variations have been exploited for land-based vehicles and aircraft, little has been done to 

exploit sub-surface terrain variations. As with magnetics and gravity, this has primarily 
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been attributed to the lack of accurate maps. If there is enough local variation in the 

seafloor, navigation relative to the bathymetric contours or to identified features should be 

possible. Section 2.3 presents terrain-relative navigation using bathymetric contours, 

which is the focus of the research in this thesis. To date, it appears that true feature-based 

navigation has not been attempted for AUVs. 

2.2.4.4 Hybrid Geophysical Navigation 

[Tuohy] shows that multiple geophysical properties can be used to assist navigation. 

Using interval B-splines, he presents an algorithm for navigation based on the 

representation, abstraction, and interrogation of multiple geophysical maps. His 

demonstrations use bathymetry and magnetics, but are equally applicable to gravity. 

Tuohy uses an interval model to provide positional estimates with uncertainty based on 

where the vehicle is not, because when the impossible is eliminated, what remains must be 

the truth. His system provides navigation accuracy on the order of the accuracy of the 

supplied maps. 

2.3 Terrain-Relative Navigation 

The research of this thesis is confined to terrain-relative navigation based on natural 

topographic contours. The three most closely related examples of prior work are discussed 

below. The first is the cruise missile for which terrain navigation is the key to its 

capability. The second attempts to apply the cruise-missile techniques to AUVs. The third 

is the most thorough discussion of bathymetric navigation for AUVs to date. 
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A cruise missile is a pilotless, continuously self-powered, and self-guided vessel 

[Tsipis]. For the majority of its path, a cruise missile uses inertial navigation, but because 

the distance between launch and target sites can be large, the drift rates of the inertial 

navigation system can cause the position accuracy to grow too large for successful target 

acquisition. However, if the missile can periodically recognize its true position and 

compare this with its preassigned trajectory, then it can make the appropriate adjustments 

and bring itself back to the correct track. Furthermore, the error between the actual and 

intended position can be used to calibrate and to reset the inertial navigation system, 

potentially reducing future errors. To periodically calculate the actual position, a terrain 

contour matching method known as TERCOM is used. 

TERCOM was conceived and patented in 1958, and [Golden] gives the history and 

development of the technique from 1958-1980. The system operates on the principle that 

"any single geographic location on the land surface of the earth is uniquely defined by the 

vertical contours of the surrounding terrain" [Golden]. The missile uses a downward- 

looking radar altimeter to obtain a sequence of terrain elevations along the flight path (see 

Figure 2.1). The guidance software then matches this measured profile with the stored 

local map and determines the geographic location of the measured sequence. The mean 

absolute difference is the quantity of interest for this comparison, and the match providing 

the minimum value of this parameter is selected. The navigation fix is then used to update 

the missile position and to adjust parameters of the inertial measuring unit. 

The TERCOM system uses several maps between the launch and target sites, and each 

map provides one navigation update, as shown in Figure 2.2. Since the missile trajectory 

between TERCOM maps need not be a straight line, flight paths that avoid enemy 
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Figure 2.1. TERCOM Matching Process, from [Golden]. 

Figure 2.2. Overall TERCOM System Uses Multiple Maps, from [Tsipis]. 
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defenses are easily accommodated. The biggest errors of the system are all map-related 

and are either due to map errors, poor choice of terrain, or the absence of suitable terrain to 

support the matching process. Good terrain must be more than just rough, it must be 

unique. With a quality map, navigation accuracy is comparable to the pixel size of the 

digital map. 

[Kullander] investigated the feasibility of this technique for AUVs. In his work, he 

assumes that the AUV has an on-board inertial navigation system and uses terrain 

navigation to periodically update the position. He employs a global map with coarse-scale 

data and patches of fine-scale data, which he calls correlation areas. He concludes from 

simulation that applying this technique to underwater environments is much more difficult 

than on land because it is more difficult to collect the necessary data and, furthermore, that 

data may have large errors. The success of the operation may also be dependent on 

knowledge of the properties of the water, which affect the performance of the sensor. 

[Bergem] takes the terrain contour matching concepts one step further and provides 

the first thorough evaluation of terrain-relative navigation for AUVs. In his work, he 

investigates the feasibility of using data from a multibeam sonar and matching the profiles 

to a pre-stored map continuously. He does not have patches of fine-detailed maps but 

assumes he has sufficient detail everywhere, so the entire region can support bathymetric 

navigation. His system is built around a Kaiman Filter and was implemented and tested 

with real data from the Oslo fjord of Norway. He successfully demonstrates that 

navigation with bounded errors can be achieved solely based on information from bottom 

topography. His research also shows that for the data set he used, "it seems that the 

position errors are mainly caused by errors in the measurements or in the reference map 
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and not by a random error caused by too little variation in the terrain." Although true for 

experiments in the Oslo fjord, this may not be true in general for all terrains. 

In Bergem's system, he uses the navigation uncertainty to define the search range in 

which he compares the profile to the map. When this search range is large, the extensive 

computations necessary to test every location become time consuming. He does not 

address this issue. 

Bergem also presents briefly the concepts of data association, i.e., the methods of 

choosing and weighting appropriate measurements. Although he selects only one match, 

he emphasizes directly the importance of using all information available. He takes only 

the best match for simplicity, because data-association techniques were "originally 

designed for target tracking, and the parameters that are needed are difficult to estimate for 

other applications, e.g., the target detection probability and the spatial density of false 

alarms." Despite this problem, data-association methods have many of the required 

characteristics needed for a navigation system, and although they are grounded in the 

Kaiman Filter framework, they are non-linear and more complex than a standard Kaiman 

Filter. 

The motivations for my research are similar to Bergem's. First, techniques using 

terrain variability have proved successful for land-based operations, and it is now known 

that the seafloor has sufficient topography to support navigation in the same fashion. 

Because bathymetric sonars have improved significantly lately and will continue to do so, 

there has been an increase in the development and improvement of bathymetric maps. 

Furthermore, a bathymetric sonar may already be on-board the AUV, for mission 

requirements. With terrain-relative navigation, the vehicle is neither dependent upon or 
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limited by the number and positions of deployed beacons. Extra time, money, and effort 

need not be spent designing, deploying, calibrating, and maintaining an acoustic beacon 

array. The navigational accuracy needed for the AUV mission will dictate the accuracy 

and the spacing needed on the supplied map. 

For my research, I address the same issues as Bergem; however, I am concerned about 

the processing time required. Computer processors are becoming faster and more 

powerful as research in that field continues, so someday it may be possible to process the 

large volume of information needed for this technique in a very short period of time. 

However, for now and the immediate future, an intelligent rather than an exhaustive search 

seems prudent. 

I also agree that it is wiser to use multiple pieces of information gained by matching 

the profile to the map, rather than by choosing only the best match. In many cases, the 

uncertainties involved can result in the best match not providing the best navigational 

update. I do use the complex algorithms and techniques of data association and do 

encounter the difficulties predicted by Bergem, but I have found realistic solutions for this 

application. The following two chapters explain my technique in greater detail. 
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Chapter 3 

Terrain-Relative Navigation: Principal 
Algorithms 

Terrain-relative navigation is a map-matching methodology that assumes the vehicle 

has both a digital bathymetric map stored on-board and the ability to image the seafloor. 

The crux of the navigation problem is to localize the sonar image in an existing global 

map. Suppose there is enough information to determine a search area in the map within 

which the image should be localized. Ideally, the task at hand is to find the best match 

between the image and the map for all possible positions and orientations in this search 

area. However, nothing is perfect, there is always uncertainty. To cite only a few sources of 

uncertainty in the sonar image, there is uncertainty due to noise on the sonar returns, 

uncertainty due to the accuracy of the sonar, and uncertainty in the sonar processing. 

There is also uncertainty on the supplied map. When all of the sources of uncertainty are 

considered, one must conclude that simply finding the best match between the sonar 

image and the map may not result in the best localization. It is also evident that it is 

important to explicitly represent the uncertainty on the accepted vehicle location. 

However, the description of terrain-relative navigation begins under the assumption that 

the best match is what is sought. A second reason to be suspicious of the best match will 

soon be discussed 

This chapter presents the two principal algorithms of terrain-relative navigation, 

namely, the matching algorithm, which localizes the image in the map, and the updating 

algorithm, which uses the matching information to generate navigation positions. 
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3.1 Matching Algorithm 

To find the best match, first, a criterion for determining the "goodness" of a match (the 

agreement between the image and the map) must be defined, and, second, this "goodness" 

must be evaluated throughout the search area. There are many resemblance coefficients 

that can be used to represent "goodness." Some are similarity parameters, such as the 

Cosine Coefficient and Correlation Coefficient (also known as the Pearson Product- 

Moment), and some are dissimilarity parameters, for example the Canberra Metric and the 

Bray-Curtis Coefficient [Romesburg]. Each resemblance coefficient is a different metric 

that measures the degree of similarity or dissimilarity but may or may not indicate identity. 

[Lim]states that for digital signals, although there are many options, the "two most 

commonly used choices are the squared difference and the absolute difference." The 

goodness criterion chosen here is the mean absolute difference (MAD) between the 

bathymetry values of the image and the map. The absolute difference, and not the 

difference squared, was chosen to avoid magnifying error values due to fliers. 

3.1.1 Coarse-to-Fine Search Method 

Since it is entirely possible that the search area is large, an exhaustive search may 

prove to be computationally too costly and time-consuming, so an alternative approach 

must be found. A coarse-to-fine method is used in which both the map and the image are 

low-pass filtered and downsampled (say by 2), then matching is attempted at this 

downsampled or coarse level [Jolion and Montanvert]. Each selected match is then tracked 

back to the original resolution, and the corresponding match-location pixel is determined. 

Next, this pixel and all its adjacent pixels, diagonals included, are searched in the original 
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map. For example, suppose we have a 2D signal and the best match is at location (17, 6) in 

a 20 x 20 grid, (see Figure 3.1). Instead of searching all 400 pixels to find (17,6), we low- 

pass filter, downsample by two, and search the downsampled area — only 100 pixels. The 

best match is found at location (9,3), which in the original scale is (18,6). Now, the patch 

(17:19,5:7) of the original grid is searched and the best match is found at (17,6). Note 

that with 2D signals, a match at the coarse level produces nine test points in the fine level. 
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Figure 3.1. Coarse-to-Fine Example. 

Pixel (9,3) on coarse scale matches to patch (17:19,5:7) on fine scale. 

For large search areas the process is to use several coarse maps, each determined by 

downsampling by a different power of two, and to proceed in successively finer steps from 

the coarsest map to the finest map. For example, say the coarsest map and image are 

determined by low-pass filtering and downsampling by four, and an intermediate coarse 

map and image are determined by low-pass filtering and downsampling by two. We start at 

the coarsest map, find the best match, move to the intermediate coarse map, test the nine 
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options, find the best match, move to the fine map, test the nine options, and find the best 

match. In my algorithm the amount of downsampling at the coarsest level adapts to the 

size of the search range. For very small search ranges, no downsampling is needed, for 

moderately small search ranges, downsample by two, for moderately large to large ranges, 

by four, and for very large ranges, by eight. The boundaries between these four categories 

have been selected based primarily on simulation run-time expectancy (see Section 4.1). 

Although the coarse-to-fine method usually reduces the computational cost 

sufficiently, there is an important drawback: There is no guarantee that the best match 

produced by the coarse-to-fine algorithm will be the same as that found by doing an 

exhaustive search at the original scale. Or, stated another way, there is a probability that 

this algorithm will not 'detect' the true match (see Sections 3.2.2.3 and 4.2). The low-pass 

filtering removes the high-frequency information in the signal, and downsampling reduces 

the total amount of information. This is the second reason why the best match should not 

simply be trusted to be the "right" match. 

Instead of selecting a single match, a list of good matches is compiled. The number of 

entries in this list can be determined in several ways. Two options are: 1) to select the 

number arbitrarily and 2) to accept all matches that have a certain relationship to the best 

match. Two possible relationship algorithms are: 1) threshold option — accept the 

matches whose MAD is no greater than a certain value over the MAD of the best match 

and 2) percentage option — accept the matches whose MAD is within a certain percentage 

of the MAD of the best match. The relationship criterion with the percentage option is 

selected because it maintains the most flexibility. 
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3.1.2 Beam Search 

To merge the concepts of a set of matches with the coarse-to-fine matching algorithm, 

the scale space is considered to be a tree with the coarsest level as the top level and the 

finest level (original resolution) as the bottom level. A modified beam search is used to 

track the matches through the tree from top to bottom. In a beam search, an arbitrary 

number w of matches is selected and the best w matches at the highest level are chosen 

[Winston]. All branches from these w nodes are followed to the next level. Suppose that 

each node has three branches so there are now 3w nodes to consider (assuming the tree is 

simple). These 3w nodes are then evaluated and the top w of these nodes are selected. The 

branches from this new set of w nodes are followed to the next level, and the process is 

repeated until the lowest level of the tree is reached. So, at each level there are always w 

nodes. This is not the same as simply tracking the original w nodes individually through 

the tree, because it is possible that several of the selected nodes may be branches of the 

same parent node one level above. Figure 3.2 shows a simple example for the case where 

w=3 and each node spawns three branches. 
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Figure 3.2. Beam-Search Tree with w=3. 

Coarsest level at top; finest level at bottom. 
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Two issues in my application make the beam search slightly more complicated than 

that just described. First, the 9w test nodes (nine because there are two dimensions) at each 

level may not be independent, as my tree is not simple. For example, suppose we return to 

the previous case of the 20 x 20 grid. Suppose also that w=2 and the best matches at the 

coarse level are (9, 3) and (8,3), (see Figure 3.3). Converting these to the original scale, 

i 

z 

coarse scale 

fine scale 

Figure 3.3. Coarse-to-Fine with Beam Search Example. 

Pixels (8,3) and (9,3) on coarse scale match to patches (15:17,5:7) and (17:19,5:7)on fine 
scale. Patches overlap on (17,5:7). 

the two patches to be searched are (17:19, 5:7) and (15:17,5:7). The test nodes (17, 5), 

(17, 6), and (17, 7) appear twice. Since it is desirable to test each node only once, the list 

of test nodes is reduced so there are no duplicates, and consequently there are less than 9w 

nodes to test. 

The second issue is that since the percentage option is used for selecting the set, the 

number of nodes w at each level is not constant but entirely dependent on the error values 

of each measurement relative to the error of the best match. It is conceivable that w could 
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be a large number at a certain level of the tree and then a small number (even one, but 

never zero) at the next level of the tree. 

3.2 Updating Algorithm 

The matching algorithm provides a set of possible match locations, but to complete the 

localization problem the information in these matches must be combined to determine a 

best estimate of the true location. I turn to estimation theory to achieve this. To keep 

terminology consistent with that field, each match in the list is designated a measurement 

and the true state is the true location of the image in the map. The framework used in this 

estimation problem is established by first outlining the Kaiman Filter then describing the 

data-association techniques that build upon this framework to achieve the actual updates. 

Much of the information presented below is well-established in the literature, and it is not 

my purpose to analyze that work. However, because of its importance to the task at hand, 

the fundamental procedures are described here. 

3.2.1 Kaiman Filter 

The Kaiman Filter is a recursive least-squares estimation technique that uses a 

Bayesian approach [Bar-Shalom and Fortmann; Brown and Hwang; Gelb]. The discrete 

linear Kaiman Filter is outlined here, without derivation, using the notation in [Bar- 

Shalom and Fortmann]. 

The state equation for state x at time step k+1 is 

jc(lfc+l) = F(k)x(k) + G(k)u(k) + vN(k)    , (3.1) 
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where x(k) is the state at time step k, F(k) is the transition matrix containing information 

about how the state evolves if no noise or inputs are made to the system, u(k) is a known 

controlled input with associated gain matrix G(k), and v^{k) is a sequence of zero-mean, 

white, Gaussian process noise with covariance matrix Q(k). The measurement observation 

equation is 

Z(k+l) = H(k+l)x(k) + w(k+l), (3.2) 

where z(k+l) is the measurement at time step k+1, H(k+1) is the conversion matrix 

between the state and measurement assuming no noise, and w(k+l) is a sequence of zero- 

mean, white, Gaussian measurement noise with covariance matrix R(k+1). 

The two equations above ideally represent the evolution of the true system and what 

the associated measurement vector should be. However, when operating in the real world, 

one can never know exactly what the state and noise are, so the above state equation 

cannot be used. Instead, the state prediction equation, which acknowledges that we can 

only proceed with an estimate of the state, is substituted. The predicted value of the state x 

at time step k+1 given all information up to and including that at time step k is 

x(k + 1 \k) = F(k)x(k\k) + G(k)u(k), (3.3) 

where x(k\k) is the estimated state at time step k given all information up to and 

including that at time step k. The state prediction covariance matrix P at time step k+l 

given all information up to and including that at time step k, which represents the level of 

error associated with the state estimate, is 

P(k +l\k) = F(k)P(k\k)F(k) + Q(k), (3.4) 
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where the prime notation indicates transpose, and P(k\k) is the state covariance matrix at 

time step k given all information up to and including that at time step k. It can also be 

defined as 

P(k\k) = E\[x(k)-x(k\k)][x(k)-x(k\k)]'\Zk\, (3.5) 

where z   represents all measurements up to and including those taken at time step k. 

The predicted measurement is 

z(k+ l\k) = H(k+ l)x(k+ l\k), (3.6) 

and the resulting innovation v, defined as the difference between the actual and predicted 

measurements, is 

v(k+ 1) = z(k+l)-z(k+l\k). (3.7) 

The innovation covariance S is expressed as 

S(k+l) = H(k+l)P(k+l\k)H'(k+l) + R(k+l). (3.8) 

Finally, the updated state estimate and state covariance at time step k+1 are 

5c(Jk+l|k+l) = *(*+l|*) + W(*+l)v(fc+l) (3.9) 

and 

P(Jfc+l|*+l) = P(k+l\k)-W(k+l)S(k+l)W(k+l), (3.10) 

where the Kaiman Gain W at time step k+1 is 
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W(k+1) = P(k+l\k)H'(k+l)S V+l) (3.11) 

The one-cycle procedure outlined above is summarized by Figure 3.4 (derivations of these 

equations are found in [Bar-Shalom and Fortmann; Brown and Hwang; Gelb]). 
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Figure 3.4. Kaiman Filter State Estimation, one cycle, from [Bar-Shalom and Fortmann]. 

The Kaiman Filter is the optimal estimator if all noises on the system and the 

uncertainty of the initial state can be modeled by zero-mean, white, Gaussian noise. If the 

noise is zero-mean but non-Gaussian, the Kaiman Filter is the best linear estimator but not 
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the optimal estimator. Also, the standard Kaiman Filter handles only one measurement 

vector at any time step. Although it is useful in many applications, these restrictions mean 

that the standard Kaiman Filter presented above is not sufficient for my application. As 

expressed previously, because of both the uncertainty of each sonar image I attempt to 

match and the uncertainty on the map itself, simply taking the best match and calling that 

the solitary measurement may not provide the best results. Therefore, I opt for a set of the 

best matches as possible measurements and turn to data-association techniques to address 

the issues of uncertainty in measurement origin and of combining the information in the 

set of best matches to achieve the best estimated state. 

3.2.2 Data Association 

Data association (or data correlation) is typically employed in tracking algorithms to 

determine the best estimate of target location by appropriately associating each 

measurement with possible targets and evaluating the validity or usefulness of each 

measurement [Bar-Shalom and Fortmann; Fortmann et al.]. Many of the algorithms and 

processes of data association were originally developed for military applications such as 

tracking missiles, airplanes, and submarines. In these applications, measurement-origin 

uncertainty is usually due to random false alarms in detection, spurious measurements due 

to clutter, or interfering targets such as decoys. Data-association problems are usually 

classified by the type of association task: 

Task 1. measurement-to-measurement association — track initiation 

Task 2. measurement-to-track association — track maintenance or updating 

Task 3. track-to-track association — track fusion in multi-sensor situations. 
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My application of navigation falls under Task 2, for which a variety of techniques can 

be used to determine the best update. Typically, these techniques can be divided into two 

categories: those that choose one of the measurements taken and those that combine 

measurements. The two most common single-measurement techniques are the strongest- 

neighbor standard filter (SNSF) and the nearest-neighbor standard filter (NNSF). The 

SNSF simply chooses the measurement giving the best match — the one with the lowest 

MAD (Match A of Figure 3.5). However, as indicated previously, this may not produce the 

Figure 3.5. Single Measurement Association Techniques. 

Arrow length indicates strength of six measurements in neighborhood of prediction p 
bounded by gate G. Strongest Neighbor Standard Filter selects A; Nearest Neighbor Stan- 

dard Filter selects B. 

best results. The NNSF uses the measurement closest to the prediction — the one with the 

smallest innovation (Match B of Figure 3.5). This measurement is chosen only for its 

proximity to the estimate, and the level of match "goodness" is ignored. This too may not 

produce the best results. Methods that combine measurements appear to be more 
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appropriate for this application, and my attention has focussed on stochastically 

combining the measurements in the set of best matches. 

3.2.2.1 Probabilistic Data Association Filter 

The Probabilistic Data Association Filter (PDAF) is a suboptimal Bayesian algorithm 

for situations in which there is only one target of interest, but several measurements of the 

target state are available at each time step [Bar-Shalom; Bar-Shalom and Fortmann]. A 

validation region or gate is defined around the predicted state, and a weighted sum of the 

measurements inside the gate is used to update the state. The PDAF operates using the 

Kaiman Filter framework discussed above. The specific differences between these filters 

are explained below. The advantage of the probabilistic data association technique is that 

all measurements inside the validation region are considered with some probability of 

being correct. The disadvantage is that the resulting estimate is guaranteed to be "wrong" 

in the sense that the single correct measurement was not selected to stand alone. However, 

in my case, it is better to have an estimate with larger values of covariance than it is to 

choose the wrong measurement and have the AUV truly believe it is somewhere that it is 

not. What follows is a summary of the PDAF development as in [Bar-Shalom and 

Fortmann]. 

For each time step k+1, a validation region V(y), centered about the predicted 

measurement, is defined as 

V(y)=\z\[z-z(k+l\k)]'S \k+l)[z-z(k+l\k)]<y\. (3.12) 
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The validation region is an ellipsoid of probability concentration — the minimum volume 

that contains a given probability mass under the Gaussian assumption. The constant 

parameter y can be obtained from tables of the Chi-square distribution if n , the 

dimension of the measurement, is known. The square root of y, g = Jy, is often referred 

to as the "number of sigmas or standard deviation" of the gate. The set of valid 

measurements (i.e., those that fall inside the gate) is denoted by 

Z(*+1).= {«,-(*+1)}.//, (3.13) 

where m^    ^ is the number of valid measurements at time step k+1 and z-(k+ 1) is the 

th k+\ 
i    measurement. Similar to prior notation, Z        represents all valid measurements 

over all time steps up to and including time step k+1, or 

„k+1 , .v,*+l 
Z = [z(j)]._ l. (3.14) 

The basic assumption of the PDAF is that the past is summarized by assuming that the 

state is normally distributed according to the latest estimate and covariance matrix, or 

p[x(k+l)\Zk] = N[x(k + l);x(k + l\k);P(k+ l|Jfc)], (3.15) 

and the new estimate is found using the latest measurements only. The basic premise of 

the PDAF is that each validated measurement has a probability that it is the correct (target- 

originated) measurement and that there is also the probability that none of the valid 

measurements were target-originated. These events are defined as 

Q.(k + 1) = zXk + l)is the target-originated measurement i = 1, 2, ...m,     , , 44 k + 1 
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0 (&+!) = none of the measurements are target-originated, 
o 

and the probabilities associated with them are 

ß. = p|ei|Z^+1lfori = 0,l,2,...mk+l. (3.16) 

Since these events are mutually exclusive and exhaustive, 

m * + i 

]T ß^+l) = 1. (3.17) 

; = o 

If x .(k + 11 k + 1) is the updated state estimate given that measurement z^k + 1) is 

the correct one, and v .{k + 1) is the innovation for measurement z-(k + 1), then the 
i ' 

updated state, given that measurement z^k + 1) is correct, becomes 

*.(Jfc+l|Jfc+l) = x(k+ l\k) + W(k+ l)vt(k+ I) for i = l,2,...mjt+1.  (3.18) 

If none of the measurements is correct, then 

xo(k+l\k+l) = x(k+l\k). (3.19) 

So, the conditional mean of the state estimate and the combined innovation are, 

respectively, 

m k+l 

Jc(*+l|Jfc+l)=   ]T *;(/:+l|fc+l)ß.(fc+l), (3.20) 

/ = 0 

53 



and 

m k + l 

v(k+l) =   ]T ß^+l)v.(Ä;+l). (3.21) 
i = 1 

(Note that v (k + 1) = 0.) Finally, the overall update equation is 

x(k+l\k+l) = x(k+l\k) + W(k+l)v(k+l), (3.22) 

where the gain W(k+1) is found using the same method as in the Kaiman Filter (Equation 

3.11). Although Equation 3.22 and Equation 3.9 appear to be the same, the key difference 

is that here v(k + 1) represents the combined innovation of all measurements. 

The main issues in developing the PDAF are to define the probabilities ß. and to use 

these weights appropriately when updating the state covariance matrix. The procedure that 

assigns the ß .'s is known as probabilistic data association (hence the filter name) and the 

equations are: 

ß^ + 1) = -^T-' (3-23) 

7 = 1 

and 

e. 
ßß + 1) =  -i for i = 1, 2, ...m,     . , (3.24) 

b + l'j 
7=1 
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where 

-1   „,  . ,.„-1 e. = exp\-fv:(k+l)S    (k+ l)v.(fc + 1)  , (3.25) 

n f 

b - (
2^z 

Y 

A-V(y) d-VG) 
(3.26) 

V.        Z    J 
D 

n   is the dimension of the measurement, Y is the constant volumetric parameter (as in 
z 

Equation 3.12), X is the spatial density of false measurements, Cn is the volume of the 

n -dimensional unit hypersphere, PD is the detection probability (probability that the 

correct measurement was detected at all), and 

PG = p{zik+l)eV(y)} (3.27) 

is the gate probability (probability that the correct measurement fell inside the gate). The 

state prediction covariance becomes 

P(*+l|*+l) = ß0(*+l)P(*+l|*) + 

[l-$0(k+l)]PC(k+l\k+l) + P\k+l) 

(3.28) 

where 

PC(k+l\k+l) = [I-W(k+l)H(k+l)]P(k+l\k) (3.29) 

is the covariance of the state updated with the correct measurement (i.e., in the absence of 

measurement origin uncertainty), and 
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p\k+\) = W(k+1) 

mk + i 

^ß.(^+l)v^+l)v/(Ä:+l) (3.30) 

i'= 1 

-v(k+l)v'(k+l) W'(k+l) 

is the measurement-dependent term that accounts for the spread of validated 

measurements. Derivations and proofs of the above formulae can be found in [Bar-Shalom 

and Fortmann]. 

Before proceeding, I briefly summarize the status thus far. Because of the matching 

algorithm chosen and the uncertainty on the sonar image and the supplied map, it is 

deemed necessary to consider a set of good matches and not just the single best match. An 

algorithm is then needed to appropriately combine the information in each of these 

matches to determine a best estimate for the match location. The PDAF is a recursive sub- 

optimal Bayesian algorithm whose procedure is similar to that of a Kaiman Filter. 

However, it differs in that the PDAF probabilistically combines multiple measurements at 

any time step and addresses the issue of uncertainty in measurement origin. The PDAF 

operates only on the current set of measurements and makes the assumption that the past 

can be approximately summarized by a state that is normally distributed according to the 

latest estimate and covariance matrix. Measurements in close proximity to the expected 

measurement value are weighted probabilistically as a function of the innovation, the 

detection probability, the gate probability, and the false-alarm rate. Thus, the new estimate 

is based on the information contained in multiple measurements. So, the basic advantage 
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of the PDAF is that all measurements in the vicinity of the expected value are considered 

with some probability of being correct. 

3.2.2.2 Probabilistic Data Association with Amplitude Information 

For my purposes, the main disadvantage of the PDAF is that once a measurement is 

validated the match 'goodness" ofthat measurement is no longer considered. To include 

this in my algorithm, I turn to the PDAF augmented with amplitude information 

(PDAFAI) [Lerro and Bar-Shalom] where I substitute the match "goodness" for raw signal 

amplitude. In fact, if handled appropriately, the "amplitude" can correspond to any feature 

or features that one may wish to use in determining measurement weights, such as level of 

backscatter or degree of bathymetric variability. 

Adding the amplitude feature modifies the weight equations only because, although 

amplitude is technically another entry in the measurement vector, it is treated separately. 

Without proof or derivation, the new probabilistic weights are [Lerro and Bar-Shalom] 

ß(*+l) =  (3.31) 

b+lejLj 

and 

eiLi 
ß.(fc+l) =  —  for* =  1,2, ...m.     i, (3.32) 

1 mk + i 

b+l*JLJ 
7=1 

57 



where b, e-, and m,     , are as before. For applications where the actual signal amplitude 

is used, L. is the amplitude likelihood ratio — the probability density function of the 

signal amplitude of a target above a given threshold with respect to the probability density 

function of noise above the same threshold. In my case, I use the match "goodness" as an 

amplitude feature, and the matching algorithm ranks the matches by the MAD. 

Following the lead of [Lerro and Bar-Shalom], a Rayleigh probability density function 

is used to determine the appropriate correlation weights, L- (see Figure 3.6). The 

Figure 3.6. Rayleigh Distribution. 

Normalized so that peak of unity is located at an abscissa of 1. 

Rayleigh function 

L. 
i 

exp- 
, sfirror. 
1 \ i -exp 

f 2\ error. 
i 

2o 
for i = = 1,2, ...m(Jk+1) (3.33) 

58 



is a one-sided distribution with an off-axis peak placed at the standard deviation of the 

error, G . The coefficient exp(l/2) is incorporated so the peak of the distribution has a 

value of unity, and the parameter G   is recalculated at each time step as the one-sided 

standard deviation of the errors of all validated measurements. With this formulation, the 

weights L ■ are relative weights (relative to one another) and not absolute weights (relative 

to a perfect match). Note that the sum of all ß. including ßo remains one but that the sum 

of all L ■ is not one. Also, the relative emphasis between the measurements and the 

prediction can be manipulated by changing the ratio of the terms in the denominator of the 

. equations, 

I ejLj 
L=I  

b 
A high value of this ratio puts emphasis on the measurements, and a low value puts 

emphasis on the prediction. Regardless, manipulation of this ratio will not lead to 

significantly different results, and such effort in this area was not determined worthwhile 

at this time. 

3.2.2.3 Parameters 

In addition to the transition matrices, control inputs, covariance matrices, and initial 

conditions, required input parameters for the updating algorithm are g, X, and Pp. 

Parameters such as P ~, n , and c„ are determined by the dimensionality of the 

application or by a combination of other parameters. For example, the gate probability 

PG is determined by n , g, and the Chi-square distribution (see Table 3.1). The gate size 

in sigmas, g, is arbitrarily selected but usually falls between two and five, depending on 

the application and how conservative the filter should be. I choose g=4 so there is a very 
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small probability of rejecting measurements because of innovation magnitude. Since the 

methods of this application are somewhat different from a traditional radar/tracking 

implementation, the remaining two parameters, X and Pp, warrant a more thorough 

explanation. 

Table 3.1 Gate Probabilities 

g=l g=2 g=3 g=4 g=5 

n  = 1        -683 .954 .997        .99994 1.0 
z 

nz = 2       -393 .865 .989 .9997 1.0 

nz = 3        -199 .739 .971 .9989       .99998 

In a traditional tracking problem, Pp is the probability that the correct measurement 

is detected at all, regardless of whether or not it falls within the gate [Bar-Shalom and 

Fortmann; Van Trees]. The detection probability is incorporated because there is some 

chance that none of the measurements taken is actually target-originated. The value used 

for Pp is usually determined by the quality of the detection device and the environment 

of operation. In my application the target of interest is the match location that gives the 

right answer to the navigation problem. As stated in Section 3.1.1, when using a coarse-to- 

fine matching algorithm, it is possible that the right measurement is missed due to the low- 

pass filtering and downsampling. It is also possible that the right match does not satisfy the 

threshold criteria due to the noise on the sensor and the inaccuracies of the map itself. 

Additionally, there is a probability that the right match lies outside the established search 

area and is then never detected. As [Bergem] says, analytically determining a value for 

this parameter can be a difficult task. 
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The remaining parameter, X, represents the spatial density of false measurements. A 

false measurement or false alarm is defined as a completely erroneous or spurious 

measurement, i.e., a measurement not associated with the target of interest. Target- 

originated measurements with considerable noise do not qualify as false measurements. In 

a radar tracking application, false alarms usually result from other targets (clutter) in the 

environment or multipath reflections [Bar-Shalom and Fortmann; Van Trees]. In the 

terrain-relative navigation application, false measurements can arise when the scanned 

image is matched to the map in an inappropriate way. This occurs when there is something 

incorrect about the image or the map, such as a bias or the absence (presence) of features 

that do (do not) belong, or when several places on the map are similar because of the map 

resolution. If a section of the seafloor image is incorrect, say, as a result of multipath or 

acoustic interference from other sources or sensors, then all associated matches can be 

incorrect. In this case, the best action to take might be to ignore all matches and proceed 

with the next scan. However, without complex analysis beyond the current scope, we do 

not know this is a bad scan and can only proceed as best as data association allows. If 

instead a portion of the map is incorrect, say, a seamount in the real world does not appear 

in the map, only matches that involve this portion will produce false measurements. So, in 

this sense, X is influenced by the map accuracy and image accuracy. A good map (image) 

produces few bad measurements, so X should be small, but a poor map (image) produces 

many false matches, so then X should be large. If the map and image are supplied not only 

with bathymetry values but also with measures of uncertainty on those values, then it is 

with the parameter X that we can include this uncertainty in the updating algorithm. 
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3.3 Summary 

In this chapter I present the two underlying principal algorithms of terrain-relative 

navigation. The matching algorithm uses the mean absolute value difference to determine 

match quality and searches the neighborhood using the coarse-to-fine procedure with a 

modified beam search. The PDAFAI is used to provide navigation updates based on both a 

predicted position and the information in validated measurements supplied by the 

matching algorithm. Each validated measurement is weighted probabilistically as a 

function of both its distance from the prediction and the match quality. To achieve 

navigation, these two algorithms are merged. The next chapter addresses the 

interrelationships between the critical parameters. 
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Chapter 4 

Merging the Algorithms 

All major pieces necessary to achieve localization are presented in the previous 

chapter. The research task remains to integrate these algorithms into an appropriate 

process. For this research the sonar image is a one-dimensional profile represented as a list 

of depth values, equally spaced, with the same spacing as the pixels of the bathymetric 

map. The state vector is 

x(k+l\k) = (4.1) 

where x and y indicate the column and row, respectively, of the matrix, which represents 

the digital map, and 9 is the orientation of the profile with respect to the x axis, i.e., a 

matrix row. For simplicity in all simulations, the state is measured directly, so the 

transformation matrix H(k+1) (see Section 3.2.1) is the identity matrix, and the 

measurement vector is 

z(k+\) = (4.2) 

The overall navigation process follows the Kaiman Filter framework shown in Figure 

4.1. First, the state and state covariance are predicted by an internal navigation system, 
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function of innovation covariance 

3. Employ coarse-to-fine matching 
algorithm with beam search 

4. Validate measurements inside the gate 

5. Update state estimate and state 
covariance using data association 

Figure 4.1. Kaiman Filter Framework. 

See also Figure 3.2. 

such as dead reckoning or inertial navigation (see Section 2.1). From this information, the 

search area of the map is determined, then the matching algorithm is employed to produce 

a list of measurements by matching the profile to the map. Finally, the state estimate and 

state covariance are updated using the data-association techniques presented in Chapter 3. 

The current chapter shows how the matching and updating algorithms are interrelated 

through the search range, the probability of detection Pp, the spatial density of false 

alarms A,, and the measurement noise covariance matrix R(k+1). 
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4.1 Search Area 

The search area at time step k+1 is found from the innovation covariance S(k+1) by 

creating an ellipse around the estimated position. The size and orientation of the ellipse 

are determined by the covariances in and the covariance between the x and y directions. 

The ellipse is defined at g standard deviations, where g=4, (see Section 3.2). For simplicity 

in implementation, the search area is defined as the smallest rectangle aligned with the 

map grid that encompasses the ellipse (see Figure 4.2). For each pixel in the search area, 

2S. 

2SX 

Figure 4.2. Ellipse and Search-Area Rectangle. 

the full range of search angles, determined by SQQ(k + 1) and g, is tested. Also, any pixel 

with as little as a single corner located inside this rectangle is included in the search area, 

even though the actual pixel location is defined as the pixel center, which may be outside 

the rectangle. This means that there are matching attempts made in the search area that are 

not located inside the validation gate, and good matches found in this region are rejected 

later by the PDAFAI. Additionally, since the coarse-to-fine algorithm has flexible 

boundaries, some pixels searched in finer levels may also lie completely outside the 
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validation gate (see Section 3.1.1). For example, if at a coarse level one of the top w 

matches corresponds to a pixel at the edge of the gate, then, when moving to the next finest 

level, that node is still expanded using all nine branches, even though some of these 

branches are outside the originally specified validation gate. As above, good matches 

found outside the gate are rejected later by the PDAFAI. 

The size of the established initial search area determines the amount of downsampling 

used for that time step. If the search area is defined as x ± Sx and y + S , where x and y are 

the estimates, and Sx and Sy are half the length and width of the encompassing rectangle 

(see Figure 4.2), then the numerical value of interest is SXS , which represents 1/4 of the 

pixels in the search area. By evaluating the simulation run time for a variety of cases, the 

guidelines of Table 4.1 were empirically deduced so the size of the search area determines 

the amount of downsampling. 

Table 4.1 Search Area vs. Downsampling 

2 <12 12< 48< 192< 
8   x y <=48        <=192 

Downsampling 12 4 8 

4.2 Detection Probability and Spatial Density of False 

Alarms 

After searching and determining the set of measurements used in updating, the 

modified PDAFAI is used, and the values for the probability of detection, Pp, and the 
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spatial density of false alarms, X, must be determined (see Section 3.2.2.3). First, we state 

that X is related to the probability of false alarm by the equation 

X  =   y- , (4.3) 
c 

where Pp is the probability of false alarm for a resolution cell of the processor, and Vc 

is the resolution-cell volume. If the resolution cell is defined as one pixel in length by one 

pixel in width by one increment in orientation, then X can be determined if Pp is known. 

Now, the problem at hand is determining the detection and false-alarm probabilities. 

In binary hypothesis testing for signal-processing applications, four probabilities arise 

[Bar-Shalom and Fortmann; Van Trees]: 

PD — Detection Probability — we say it is there when it is, 

PF — False Alarm Probability — we say it is there when it is not, 

p     — Miss Probability — we say it is not there when it is, 

Unnamed Probability — we say it is not there when it is not. 

Historically, the fourth probability has been left unnamed, but it is equal to 1 - Pp. Also, 

PM =  1 - PD. These probabilities are most often determined by defining the 

probability density functions of the noise involved in the particular application, then 

integrating to the left or the right of a threshold determined by the signal-to-noise ratio. 

My application differs from the typical situation in which this is applied, so I adapt the 

standard approach to be more suitable. 
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In my application of matching profile to map, each profile point has an uncertainty of 

Op, and each map point has an uncertainty of Gm. The absolute value error between 

profile and map depth values is then used to determine whether that particular location 

gives a sufficiently good match. Consider first the profile as a single point, so the error is 

found by determining the absolute difference between this point and the corresponding 

point on the map. If we sit on the profile point and absorb all the uncertainty of the map 

[Smith et al.], the result can be depicted as in Figure 4.3, where P represents the profile 

2 2 2        2 value, M the map value, and a  is the total uncertainty a   = a + <5m. Equivalently, we 

can shift the axis so the Gaussian uncertainty is centered about the origin, and the 

difference between P and M is represented by E. Now, if the profile is a series of points, all 

with uncertainty a , and the map is also a group of points, all with uncertainty am, then 

the depiction of Figure 4.3 is still valid if E now represents the average absolute value 

difference across all the points. This value is the mean absolute difference (MAD) used as 

the goodness criteria in the matching algorithm (see Section 3.1). 

Next, let us say that the best match has a MAD value of E, and the maximum validated 

MAD, as defined by the percentage criteria, is value F, and we redraw the figure as in 

Figure 4.4. Now, no matches have MAD smaller than E, all matches with MAD values 

between E and F are validated, and all other matches have MAD greater than F. More 

specifically, for the right answer to be validated, it must have a MAD value between E and 

F, and for it to be missed or rejected, it must have a MAD value greater than F. Using 

Figure 4.4, the probability of a miss is found by integrating the area under the uncertainty 
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Figure 4.3. Total Gaussian Uncertainty Placed on Profile. 

With deviation a - about profile depth value P with corresponding map depth value M, or 
about zero with average absolute value difference E between all profile and map points. 

curve from F to °°. Actually, because all MAD values are positive, the true miss 

probability is 

PM = 2JG(e)de, (4.4) 

where G(e) is the Gaussian uncertainty curve as a function of the MAD e. The detection 

probability is 
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Figure 4.4. Total Gaussian Uncertainty Placed on Profile with Acceptance Thresholds. 
With deviation a - best match has error E, validated match with maximum error has error 
F No matches with error between 0 and E. All validated matches have error between E 
and F. Missed and rejected matches have error greater than F. 

PD = l-2JG(e)de. (4.5) 

This value must then be multiplied by the gate probability, PG (Equation 3.27), because 

we approximate the search region as the area within the gate. Finally, the equation we use 

is 

PD = PG l-2JG(e)de (4.6) 
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In the standard application [Van Trees], as the acceptance threshold is raised higher, 

more of the signal is rejected because the acceptance criterion is more stringent. Thus, the 

detection probability is reduced. Here, the raising of the threshold corresponds to the 

shifting of E, and consequently F, towards the origin, meaning that the MAD must be 

smaller to pass the acceptance criterion. This results in a larger calculated value for PM, 

and thus a smaller PD, as it should be. For a given value of E, varying the acceptance 

criterion, or percentage value (see Section 3.1.1), changes the location of F. For small 

values of the percentage threshold, F is closer to E, and the integration of Equation 4.4 

begins closer to the origin. Thus, PM becomes larger and PD smaller. Conversely, for 

large values of this threshold, PM decreases and PD becomes large. 

Next, since only the matches with MADs between E and F have been validated, all 

false alarms must be part of this set and also have MADs between E and F. Further, since 

there is only one right answer (see Section 3.2.2.1), all matches between E and F, except 

potentially one, are false alarms. We therefore approximate the false-alarm probability as 

twice the area under the uncertainty curve between E and F, knowing that this can 

potentially be a slight over-estimate: 

F 

PF = 2\G(e)de. (4.7) 

E 

As with the detection probability in the standard application [Van Trees], raising the 

acceptance threshold reduces the false-alarm probability, as more of the signal is filtered 

out. For my application, shifting E and F toward the origin means that Pp is found by 
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integrating over a part of the curve that has greater magnitude. This seemingly gives a 

higher value; however, because F is found by the percentage criterion (see Section 3.1.1), 

the separation between E and F becomes smaller as E moves toward zero. So, although the 

magnitude of the probability curve is higher, the distance over which it is integrated is 

smaller. Additionally, as with the detection probability, reducing the percentage threshold 

value reduces the value of Pp, because for a given value of E the integration is over a 

smaller range. Similarly, for larger percentage values, the integration produces a larger 

value for Pp. 

The specific nature of Pp with respect to the values of £ and F is also dependent on 

the magnitude of the variance c . The false-alarm probability does not follow the same 

trend as the curve for the standard application when a is small and E is large, or, in other 

words, when the noise should be small but the MAD values are actually quite large. When 

this occurs it is an indication that something is very wrong, such as a bad bias in the profile 

or map, or the matching process is being applied to the wrong area of the map, i.e., the 

vehicle is not where it thinks it is. 

4.3 Measurement Noise Covariance Matrix 

The 3x3 measurement noise covariance matrix R(k+1) represents the zero-mean white 

Gaussian measurement noise on the combined match location (x, y, 6). This matrix is used 

to determine the Kaiman Gain W(k+1) of the PDAFAI (Equations 3.8, 3.11, and 3.22), 

which defines the relative weight between the prediction and the combined information 
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from the validated measurements. The uncertainty denned by R(k+1) can be visualized as 

an ellipsoid not necessarily aligned with the axes of the coordinate frame. The off- 

diagonal terms indicate the cross-covariance between the three types of noise, and they 

determine the 3D orientation of the ellipsoid. Only if all off-diagonals are zero will the 

ellipsoid and frame axes be aligned. 

In most applications, the entries in the measurement noise covariance matrix are found 

directly from the sensor taking the measurement. However, in this application the 

measurement is found by the matching process. For this reason, we find the entries of the 

R(k+1) matrix empirically from the process and data themselves. We must, however, also 

make one assumption: that all valid measurements at a single time step have the same 

uncertainty and that uncertainty is the same as the uncertainty on a measurement located at 

the prediction. That multiple measurements are used in determining the combined 

measurement is not relevant for defining R(k+1); that information is accounted for 

elsewhere in the updating procedure by using the measurement weights ßz- (Equation 

3.32) and the state covariance spreading term P\k + 1) (Equation 3.30). This assumption 

allows us to use the PDAFAI formulation described previously, because in that procedure 

it is assumed that all measurements have the same uncertainty. 

Now, the task at hand is to determine the measurement uncertainty at the location of 

the prediction. To approximate this empirically we use the following procedure. First, we 

generate an exact profile at the predicted location by sampling the known map. Second, 

using this profile we apply the matching algorithm to the neighborhood around the 

prediction and evaluate the matching strength. With this information and the noise 

variance on the profile, R(k+1) can be determined using an adaptation of the Cramer-Rao 
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Lower Bound, as described below. Doing this, the measurement noise covariance matrix 

becomes, as it should be, a function of the terrain, the matching process, and the profile 

uncertainty. 

4.3.1 The Cramer-Rao Lower Bound 

The Cramer-Rao Lower Bound (CRLB), the most extensively used bound in the 

signal-processing literature, is often employed to obtain the resolution of measurements 

[Willsky et al.]. It is defined as the lower bound on the variance about a parameter A of any 

unbiased estimator. The bound is expressed as the inverse of the sensitivity, which is 

defined as the curvature of a selected function f(A) about the parameter value of interest 

A0. Pictorially, the CRLB corresponds to fitting a quadratic at the peak of the curve A0 

(see Figure 4.5). Visually, one can see that if the peak is sharp a slight variation in the 

quadratic fit about the peak 

Ao 

Figure 4.5. Cramer-Rao Lower Bound. 
Determined by fitting a quadratic to the peak of f(A) at A0. 

parameter value can produce a large difference in the function value. This means that the 

system is very sensitive, so the CRLB must be small. Likewise, if the peak is flat, a large 

variation in the parameter value is required for a large difference in the function value. 

Here, the system is not sensitive to the parameter, and thus the CRLB should be large. 
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There are two things that should be noted now. First, the function f(A) is usually 

determined by an auto- or cross-correlation function or the correlation coefficient. Second, 

the CRLB represents the optimistic minimum resolution or uncertainty, but in some cases 

this bound is far from attainable. This is true because the curvature at the peak determines 

the bound independently of the overall shape of the function. 

The CRLB is inappropriate for my application for two reasons. First, when calculating 

parameters empirically, it is important to use the same function as in the overall process 

that uses the parameter. For me, this translates to using the same similarity parameter 

function as in the matching algorithm (see Section 3.1), namely the mean absolute 

difference instead of the correlation function. Second, for my application I require a 

realistic estimate for the measurement uncertainty, not a lower bound, and most definitely 

not an unattainable lower bound. 

4.3.2 An Adaptation 

Values for the measurement noise covariance matrix can be determined using the 

concepts of the CRLB if a few adjustments are made. As stated above, the MAD should be 

used instead of the correlation function. The MAD is actually a dissimilarity parameter 

[Romesburg], which ranges from zero for perfect similarity to infinity for large 

dissimilarity. When the profile is matched across a map row or column, this parameter 

gives a valley instead of a peak at the position of perfect match, and thus the fitted 

quadratic must open upward instead of downward (see Figure 4.6). Here, we outline the 

procedure for defining the quadratic in one dimension and subsequently expand the 

concept to address multidimensionality. 
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quadratic fit about the valley 

Ao 

Figure 4.6. Quadratic Fit at A0 opening upward. 

For a chosen location xQ on the map, a profile centered about x0 is selected. The 

profile matches the map exactly at this location since no noise is added. The profile is then 

matched across the whole map row (x-direction) to give the dissimilarity parameter 

function (DPF), as in Figure 4.7. Since in reality there will be Gaussian noise on each 

point, a threshold d that represents this value is also drawn in the figure. The two points on 

the function nearest to the valley minimum and on opposite sides of x0 which intersect 

this threshold are noted as xl and x2. Next, the maximum of \x0 - xA and \xQ - x2\ is 

chosen. Finally, a parabola that intersects this point and has its valley minimum at x0 is 

obtained. The inverse of the curvature of this parabola at x0 gives the resolution or 

2 
variance in the x direction, cx. 

Selecting an intersection point between the threshold and the DPF assures that the 

calculated resolution is not an unattainable lower bound. In fact, choosing the further of 

the two points will not create any type of lower bound but may in fact give a value closer 
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quadratic fitted to (xl5d) 

Xl XQ X2 

Figure 4.7. Quadratic Fit of Dissimilarity Parameter Function (DPF) with \xrx0\ > \x2-x0\. 

to an upper bound. We cannot, however, claim that this value is a true or strict upper 

bound. 

To obtain all entries of the 3x3 measurement noise covariance matrix, the above 

technique is expanded for three two-dimensional cases and, instead of a parabola, an 

elliptic paraboloid is fitted. For example, consider the two-dimensional case for the x and y 

directions. The selected profile is then matched across both directions, and a dissimilarity 

parameter surface (DPS) is defined, still with valley minimum at the chosen location of 

(*o' ^o )• The threshold, d, is then a plane that intersects this surface in a contour instead 

of points (see Figure 4.8). From the contour, the points (xv y0), (x2, y0), (x0, Vj), and 

(x0, y2) are easily found, and the maximum distances in the x and y directions are taken as 

before. Additionally, the point on the contour with maximum distance from (x0, y0) is 

labeled {xm, ym). These three points are then substituted into the equation for an elliptic 

paraboloid as follows. 
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Figure 4.8. Intersection Contour at Threshold Showing Key Points. 

First, we establish a coordinate frame with origin at (JC0 , y0,0) and label the axes X, Y, 

and Z. Next, the three points selected are defined as (Xj, 0, d), (0, Yl, d), and (X   , Y   , 

d), where Xx is the maximum of \xQ - xx\ and \x0 - x2\, Yx is the maximum of \y0 - yA 

and \y0 - y2\, and (Xxy ,Yxy,d) is (xm -x0,ym-y0,d). The elliptic paraboloid is defined 

by 

AX2 + BXY + CY2 + Z = 0, (4.8) 

where A, B, and C are constants. Substituting in the three points above determines the 

values of these constants, and the equation becomes 
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d x2 d 

X\ XxyYxy 

\ 

xy -1 

J 

= Z. (4.9) 

As an example, Figure 4.9 shows the special case where the elliptic paraboloid is aligned 

Figure 4.9. Elliptic Paraboloid Aligned with Axes. 
a=Xj, b=Yj, c=d, from [Thomas and Finney]. 

with the axes so there is no XY cross term. 

Finally, the curvatures (second derivatives) are taken about (0,0,0): 

2 
d Z 

dx2 

Id 
2' 

(4.10) 
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2 
dz 
dY2 

2d 
2' 

(4.11) 

and 

2 
dz -d 
dXdY XxyYxy 

\ 

J 

(4.12) 

2       2 2 
and the variances cx, G , and a    are the inverses of these three equations, respectively. 

Fundamentally, this procedure fits an ellipse to the contour defined by d and, in turn, fits 

the paraboloid to this ellipse. 

For the orientation terms, an elliptic paraboloid is created for each of the two- 

dimensional cases XQ and Y®. For the XQ case, the equation is 

d Y2 d 

"^      ~ X    0 
X-i XV      XV 

(x2 X
xQ 

x2 

0 
^ 

xQ 

&, 

-1 |X0 + 4r02 

J 01 

= z, (4.13) 
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and the parameters Xj, 0!, XxQ, and 0^ are defined by matching across the x direction 

and rotating in 0. Here, Xx is the same as in the XY case, but XxQ is not the same as Xxy, 

because it is determined by the X0 contour at d instead of the XY contour. 

The last equation, for the 70 case, is 

d y2 d 
(2 2 A 

Y2    e2 F0 + 4^2 = z, (4.14) 

and Yx and 0j are as before, but YyQ and 0y6 are determined by the 70 contour at d. 

9 9 2 
Finally, the remaining three variances oe, oxQ, and GyQ are, respectively, the inverses 

of 

2 
d z 

de     0 

2d 
2' 
1 

(4.15) 

2 
d Z -d 
3X90 XxQ®xQ 

(x2 

x2 
0 

\ 

+ xQ -1 
0 i     ; 

(4.16) 
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and 

2 
dz 
dYd© YyB&ye 

fY2    e2 

,Y2 G l 
(4.17) 

) 

Note that in all cases the curvatures in the X, Y, and 0 directions are positive, giving 

positive entries along the diagonals of R(k+1), but that the "cross-curvatures", and thus the 

off-diagonals, may be either positive, negative, or zero. Then, the 3x3 measurement 

covariance matrix is defined as 

R(k+1) 

2      2      2 
öxx Gxy a*e 

2      2      2 
öxy avy Gv6 

2       2       2 
La^e Gve aee 

(4.18) 

The final step in the procedure is to check if R(k+1) meets the criterion for a realistic 

covariance matrix. Cross-covariances of a true covariance matrix are limited by the 

correlation coefficient pfj- [Papoulis], which is defined as 

PlJ    °i°j 
(4.19) 

for the variables / andy, and this similarity parameter [Romesburg] has range 
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y 
<l (4.20) 

Thus, given G ■ and a •, minimum and maximum bounds are set for oi;-. Consequently, if 

the above procedure calculates a value for a cross-covariance outside the acceptable range, 

the R(k+1) matrix is not a valid covariance matrix. When this occurs, the cross-covariance 

is set to the appropriate minimum or maximum value so an acceptable matrix is used in 

the updating algorithm, (see Section 3.2). 

4.3.3 Examples 

Next, this technique is demonstrated using examples from real bathymetry. Figure 

4.10 shows a contour plot of deep-ocean bathymetry approximately located at 26.35°N 

50 100 150 200 250 300 
x position (pixels) 

350 400 450 

Figure 4.10. Contour Plot of Deep Ocean Bathymetry with 3 Example Profiles. 
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46.05° W on the western flank of the Mid-Atlantic Ridge between the Kane and Atlantis 

Transforms. The map was created from data taken by a 120-kHz sidescan sonar. The 

region shown is a 2495 m x 2620 m section of a steep ridge bounded on one side with a 

sedimentary plateau and on the other by an area of gradual slope. The pixel spacing is 5 m 

in both directions, and the minimum and maximum depths are 3769 m and 4631 m, 

respectively. Three profiles from this map, also drawn on the figure, were chosen to 

demonstrate how the terrain affects values of the measurement noise covariance matrix. 

The profiles are centered about (275,125), (275, 350), and (275,250), and all have an 

orientation value of 90°, which means they correspond to a subset of a column. 

Figure 4.11 shows an enlargement of the map for the neighborhood around the first 

profile, which is given in Figure 4.12. This region is the flattest area of the overall map. 

Figures 4.13,4.14, and 4.15 show respectively the contours at d=5 for XY, X©, and Y©. 

The XY contour roughly follows the terrain in this region as it should, and the associated 

three R(k+1) values are Rxx = 80, Ryy = 108, and Rxy = 146. Here, R^ exceeds the 

acceptable limit defined by the correlation coefficient, so Rrv is set to the maximum 

acceptable value, or Rxy = 93. The XQ and YQ contours indicate that the matching 

process is very insensitive to the orientation at this location. In fact, these contours do not 

close because it is so insensitive that even a 60° difference in orientation is not sufficient 

to produce a large enough value of the DPS. 

For these cases, it is not possible to obtain a true value for Ql and 62, so instead the 

maximum value of 60° is chosen as 0j, and RQQ is determined. RxQ and R e are 
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Figure 4.11. Map Region about Profile 1. 
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Figure 4.12. Profile 1. 
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Figure 4.13. XY Contour at d=5 for Profile 1. 
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Figure 4.14. X-Theta Contour at d=5 for Profile 1. 

approximated as zero. Finally, the measurement noise covariance matrix for the first 

profile, with d=5, is 
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R   = 
80 93 0 
93 108 0 
0 0 360 

(4.21) 
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Figure 4.15. Y-Theta Contour at d=5 for Profile 1 

Figure 4.16 shows an enlargement of the map for the neighborhood around the second 

profile, which is shown in Figure 4.17. This region has more variation than Region 1 but 

consists mostly of gradual slopes. The XY, X0, and 70 contours at d=5 are shown in 

Figures 4.18-4.20. Here again the XY contour follows the terrain, but in this case it does 

not close, indicating that the profile matches well as it translates along the ridge. In this 

case, it is possible to obtain Xx and Yx but not true values for Xxy and Y^. The 

maximum distance point is approximated as the furthest point from the true location that is 
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Figure 4.16. Map Region about Profile 2. 
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Figure 4.17. Profile 2. 

also part ofthat contour coming closest to the true location. For Figure 4.18, the 

approximated (X   , Y   ) point is indicated. xy'     xy 
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Figure 4.18. XY Contour at d=5 for Profile 2. 
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Figure 4.19. X-Theta Contour at d=5 for Profile 2. 
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Figure 4.20. Y-Theta Contour at d=5 for Profile 2. 

The XQ and YQ contours for this case close on one side only, which means that 

rotation in one direction produces large DPS values but that rotation in the opposite 

direction does not. To keep the procedure consistent, the larger value of |8j - 60| and 

|62 - 0O| is chosen, which in this case is the maximum possible value. It is again assumed 

that the X© and F0 cross terms are zero. Finally, the measurement noise covariance 

matrix for the second profile is 

R2 = 
22 14 0 
14 11 0 
0 0 360 

(4.22) 

Figure 4.21 shows an enlargement of the map for the neighborhood around the third 

profile, which is shown in Figure 4.22. This region is the steepest of the three locations 

90 



220 240 260 280 
x position (pixels) 

300 

Figure 4.21. Map Region about Profile 3. 
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Figure 4.22. Profile 3. 

and has the most varying topography. The XY, X©, and YQ contours at d=5 are shown in 

Figures 4.23 -4.25. Here, all contours close about the center point, and thus all values are 

calculated according to the normal process. This gives 
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Figure 4.23. XY Contour at d=5 for Profile 3. 
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Figure 4.24. X-Theta Contour at J=5 for Profile 3. 
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Figure 4.25. Y-Theta Contour at d=5 for Profile 3. 

3 _ 
5.3 0.86 38 
0.86 0.24 5.5 
38    5.5   71 

(4.23) 

However, in this case, all three cross-covariances exceed the acceptable values, so they are 

set to the appropriate maxima which give 

3 _ 
5.3 0.36 19 

0.36 0.24 4.1 
19    4.1   71 

(4.24) 

Interesting to note is that for this case there are multiple closed contours in Figures 

4.23 and 4.24. This indicates that the DPS has multiple minima, although the global 

minimum occurs at the center point. The presence of alternative minima means that the 
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exact profile matches well in multiple but separate locations, and thus it is possible that 

when the noisy profile is matched it matches best at one of these alternative locations. This 

further justifies the need to consider multiple matches (see Section 3.2). Several X© 

contours for multiple values of d are shown in Figure 4.26. An area of large error separates 

120 

100- 

°   60 

60 80 
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100 120 

Figure 4.26. Multiple X-Theta Contours for Profile 3. 

the two local minima from the global one, and these minima have DPS values of less than 

3, which is the level of uncertainty one could expect from the sensors used aboard an AUV 

(see Section 5.1). 

4.4 Summary 

In this chapter, I present the interrelationships between the matching and updating 

algorithms of the previous chapter. Specifically, I show that the search range is determined 

by the innovation covariance and the amount of downsampling is subsequently determined 

by the size of the search range. The probability of detection and the spatial density of false 
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alarms are determined by the uncertainties on both the map and the current profile and the 

actual mean absolute differences of the validated measurements. The measurement noise 

covariance matrix is determined empirically a priori by finding three dissimilarity 

parameter surfaces for each of the XY, XQ, and 70 planes for the neighborhood about the 

true profile location. An elliptic paraboloid is then fit to each dissimilarity parameter 

surface and the inverses of the second derivatives are taken in a fashion similar to the 

procedure for determining the Cramer-Rao Lower Bound. In the event that the calculated 

cross-covariance values are outside the limits set by the correlation coefficient, the 

appropriate minimum or maximum value is substituted so a valid measurement noise 

covariance matrix is obtained. Examples show that good matches can be obtained in 

multiple locations, which verifies that multiple matches should be considered. 
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Chapter 5 

Simulations 

The terrain-relative navigation methodology, as described in the previous two 

chapters, is both sensor and scale independent. It can operate with any point spacing and 

any uncertainty and need not be modified for each application. Only the sonar pre- 

processing, which provides the profile and map, is sensor dependent. For this reason, the 

terrain-relative navigation algorithms are constructed in terms of the pixel spacing instead 

of specific dimensions. 

Presented in this chapter are five tracklines on real deep-ocean bathymetry (see Figure 

4.10). Because excessive computations are required to determine the measurement noise 

covariance matrix when the profile orientation does not align with the axes, the tracklines 

were selected so that such computational issues could be avoided. The tracklines cover 

several types of terrain, including a steep ridge, a flat plain, and a gradually sloping area. 

After a brief discussion of system parameters, the navigation results are first displayed in 

pixel units for a qualitative understanding then discussed quantitatively in true units 

(meters). 

5.1 Parameter Selection 

The parameters that remain constant for all simulations are summarized in Table 5.1. 

For this demonstration, the state is measured directly. The governing dynamic equation is 
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x(Jt+l) = x(k) + u(k+l)Ak. 

Table 5.1 Constant Simulation Parameters 

F(k)=I3 ^e=0 °«=lm g=4 

G(k)=I3 ^e=0 Gp=3m percent 
threshold=10% 

H(k)=I3 i?ee=750 

degrees2 

d=2.4 profile length 
=50 

(5.1) 

The matrices, F(k), G(k), and H(k+1) are all 3x3 identity matrices, so the state and 

measurement vectors are both 

and the control inputs are the derivatives 

The variable Ak represents the amount of time between updates. For a vehicle 

traveling at a speed of 1 m/s, 5 s are required for the vehicle location to change by one 

pixel, since the pixel spacing is 5 m. Because I do not expect sub-pixel resolution for the 

navigation, Ak is chosen to represent 10 s, so that a vehicle with velocity of 1 m/s (which 

is typical of current AUVs) will travel approximately two pixels in a time step. So 

At = 10 s, but Ak = 1. 
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The process noise covariance matrix Q(k) (see Section 3.2.1) is found from [Leader] 

and [RD Instruments] by assuming that internal navigation comes from an on-board 

gyrocompass and Doppler velocimeter log, such as the Workhorse Navigator. The values 

should of course grow with time. However, given that At is 10 s for a single time step Ak, 

and if cross-covariances are assumed zero, 

ß(*) = 
0.36 0 0 

0 0.36 0 

0 0 0.01 

(5.2) 

where the x and y terms are in units of pixel2, and the 0 term is in degrees . 

The simulations in this chapter are semi-aided by the Doppler log. The control input u 

is the velocity vector plus noise, which drives the internal navigation. Strictly speaking, 

each velocity measurement should be another entry in the measurement vector and could 

be another entry in the state vector. For simplicity in demonstrating the independent 

capabilities of the terrain-relative navigation however, only the output of the terrain- 

relative navigation matching process defines the measurement vector. So, the values for 

the control input u and the process noise covariance matrix Q(k) are in part determined by 

the Doppler log. 

The profile consists of 50 depth values, equally spaced, with the same spacing as the 

pixels of the map (5 m), and the depth uncertainty on the profile points is constant. Current 

high-quality sensors can provide a sonar scan with depth uncertainty of roughly 2-5 m 

[Stewart 1997]. I choose a   = 3 m as a representative value. A larger value influences 
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the calculations of PD, X, and R(k+1) (see Section 4.3). Also, although most parameters 

are normalized over the number of points in the profile, generally, longer profiles contain 

more information and are thus harder to match well, because the additional information 

makes the profile more unique. Shorter profiles contain less information and can be 

matched well more easily. This is implicit in the terrain-relative navigation process, and 

varying the profile length affects the number of matches as well as the values of E and F 

(see Section 4.2). However, for the simulations of this research, the profile length is 

always 50 points. This number was selected because a profile of this length provides 

sufficient information about the local topography without demanding excessive 

computational resources. The effects of other parameters have been discussed elsewhere, 

but I state here that I assume the map is fairly accurate with depth uncertainty of a    =1 

m (see Section 4.2); the gate extends to four deviations, or g=4 (see Section 3.2.2.1 and 

4.1); and the percentage threshold is 10% (see Sections 3.1 and 4.2). 

As stated above, in the field an AUV would be equipped with a fairly accurate 

compass or angular velocimeter. Consequently, the orientation measurements provided by 

the terrain-relative navigation have much higher uncertainties than the on-board internal 

navigational sensors. Although I have shown that terrain-relative navigation can provide 

profile orientation measurements and the associated uncertainties (see Chapter 3 and 

Section 4.3), for the demonstration in this chapter I assume that compass or velocimeter 

measurements are available and much more trustworthy. Thus, I set RBQ to its maximum 

value and decouple the orientation cross-covariances by setting the values of RxQ and R e 

to zero. This minimizes the effect of the terrain-relative navigation orientation 

100 



measurements. A random variable with deviation of unity has an average value of 

approximately 0.8. Thus, profiles with uncertainty of op = 1 will give a threshold of 

d=0.8, and, extrapolating to my case of <5p = 3, d=2A. So, for all R(k+1) calculations, 

d=2A, and the maximum value for the measurement noise orientation uncertainty is (see 

Equation 4.15) 

ee      2(2.4) 
(5.3) 

in units of degrees . 

5.2 Tracklines 

Five tracklines across the deep-ocean bathymetry of Figure 4.10 were tested to 

determine the performance of the terrain-relative navigation system. This section presents 

those tracklines with a qualitative analysis of the results. 

The first trackline has initial conditions of both the true and estimated states as 

JC = 

300 
100 
0 

(5.4) 

with a state covariance matrix 

5 0 0 
0 5 0 
0 0 0.5 

(5.5) 
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The control input vector is 

u = + n, (5.6) 

where n is a Gaussian white noise vector with covariance 0.6 (m/s)2for the x and y 

velocities and 0.1 (degrees/sec)2 for the angular velocity. So, the vehicle travels parallel to 

the y axis, perpendicular to the profile orientation. The true trackline continues for 150 

time steps and ends at 

x = 
300 
400 

0 

(5-7) 

Figure 5.1 shows an enlargement of the map for the region in the neighborhood of 

Trackline 1. Figures 5.2 and 5.3 show the values of Rrr and /?„„ for Region 1 with this xx yy a 

profile orientation. The vehicle starts in a relatively flat area with large measurement 

uncertainty, particularly in the y direction. It then passes through steep terrain, which 

provides very accurate navigation, as both Rxx and Ryy are small. Towards the end of the 

trackline, the terrain has less variability and again gives large measurement uncertainty, 

but this time more so in the x direction. 

Figures 5.4 and 5.5 show the true and navigated tracks and the associated covariances 

for Trackline 1. At the beginning of the trackline, the estimated state does not track the 

true state well and the covariances stay large. As the vehicle moves into the steep terrain, 
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Figure 5.1. Region 1 with Trackline 1. 
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Figure 5.2. R^ for Trackline 1. 
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Figure 5.3. R^ for Trackline 1. 
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Figure 5.4. True (-) and Navigated (*) Trackline 1. 

more accurate navigation is achieved, and the estimated state holds the true track fairly 

well with small covariance values. Then, the vehicle leaves this area and enters a region 

with less variable terrain, and the estimated position again does not track the true state 
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Figure 5.5. Covariances for Trackline 1. 

xx(*), yy(+), xy(o). 

well. In this difficult area, the state covariance grows as the estimate becomes well off- 

track. Eventually, the measurements pull the estimate back towards the correct values, so 

the navigation does not diverge greatly. This is a property of a well-defined Kaiman Filter 

[Brown and Hwang]. 

For this trackline, I also show, as an example, the Kaiman Gain value W(k+1) for the y 

direction (see Figure 5.6). Note that the gain on the measurements is low in the areas 

where the terrain does not support good navigation but is high in the area where the terrain 

should provide accurate navigation. The Kaiman Gain is a direct function of the 

measurement covariance matrix (Equations 3.8 and 3.11), so the gain values reflect the 

measurement uncertainty. 

Trackline 2 is the reverse of Trackline 1, namely it starts at 
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Figure 5.6. Kaiman Gain for xx, Trackline 1. 

x = 
300 
400 

0 

(5.8) 

has control input of 

u = 
0 
-2 
0 

+ n, (5.9) 

where n is as above and heads toward 

x = 
300 
100 
0 

(5.10) 

The initial state covariance is the same, and Figures 5.1-5.3 are of course also valid for this 
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trackline. 

Figures 5.7and 5.8 show the true and navigated tracks and the associated covariances 

for Trackline 2; the results are similar to those of Trackline 1. The vehicle does not hold 
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Figure 5.7. True (-) and Navigated (*) Trackline 2. 

the track well at the beginning but improves greatly towards the middle and then gets 

somewhat off-track towards the end. The covariances also give similar results: large in the 

beginning, settling to small values in the middle, and growing again towards the end. 

The third trackline has initial conditions of both the true and estimated states as 

x = 
150 
100 

0 

(5.11) 

with a state covariance matrix 
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Figure 5.8. Covariances for Trackline 2. 

**(*), yy(+), xy(o). 

p = 
5 0 0 
05 0 
0 0 0.5 

(5.12) 

The control input vector is the same as that of Trackline 1, 

u = + n, (5.13) 

so Trackline 3 is also parallel to the y axis and ends at 

x = 
150 
400 
0 

(5.14) 
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Figure 5.9. Region 3 and Trackline 3. 

given 150 time steps. Figure 5.9 shows an enlargement of the map for this region; Figures 

5.10 and 5.11 show the corresponding values of Rxx and Ryy. Again, the vehicle starts in 

a relatively flat region with somewhat large (although not as large as Trackline 1) 

measurement uncertainty values, especially in the x direction. The vehicle then travels 

across the steep ridge. However, in this case it does not exit the area of highly variable 

terrain. 

Figures 5.12 and 5.13 show the true and navigated tracks and the associated 

covariances for this trackline. At the very beginning, the estimated state does not track the 

true state well and the covariances are large. However, after a brief period when the 

covariances become very large, the tracking is fairly good and the covariances stay small. 

Trackline 4 has initial conditions of both the true and estimated states as 
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Figure 5.10. R^ for Trackline 3. 
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X = 

300 
400 
90 

(5.15) 

with a state covariance matrix 

P = 
5 0 0 
0 5 0 
0 0 0.5 

(5.16) 

The control input vector is 

u = 
-2 
0 
0 

+ rc. (5.17) 

This time the vehicle travels parallel to the x axis, and the profiles are parallel to the y axis. 

The true trackline extends for 100 time steps and ends at 

x = 
100 

400 

90 

(5.18) 

Figure 5.14 shows an enlargement of the map for the region in the neighborhood of 

Trackline 4. Figures 5.15 and 5.16 show the values of Rxx and R    for Region 4 with this 

profile orientation. The vehicle starts in the gradually sloped area with large measurement 

uncertainty, particularly in the x direction, and passes through a region where R    is very 

large. Then, it travels to the steep ridge where more accurate navigation is possible as both 
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Figure 5.14. Region 4 and Trackline 4. 
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Figure 5.15. R^ for Trackline 4. 
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Figure 5.16. R^ for Trackline 4. yy 

R^ and R    are smaller. 

Figures 5.17 and 5.18 show the true and navigated tracks and the associated 

covariances for Trackline 4. The navigation is fairly good throughout the trackline. 

Although no well-defined transition point appears in the trackline, the covariances 

decrease as the vehicle moves over the ridge. This corresponds roughly to when JC=190. 

The final trackline travels directly along the ridge. The initial conditions are 

x = 
350 

250 
90 

(5.19) 

with a state covariance matrix 
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xx(*), yy(+), xy(o). 

115 



p = 
5 0 0 
0 5 0 
0 0 0.5 

(5.20) 

and a control input vector 

u = + n. (5.21) 

Again, the vehicle travels parallel to the x axis for 100 time steps, and the profiles are 

parallel to the y axis. Figure 5.19 shows an enlargement of the map for the region in the 

290 
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Figure 5.19. Region 5 with Trackline 5. 

neighborhood of Trackline 5: Figures 5.20 and 5.21 show the values of R    and R   . For xx yy 

the entire trackline, both Rxx and R    stay fairly small. In fact R    stays below one for the 
yy 
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Figure 5.20. R^ for Trackline 5. 
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Figure 5.21. fl™ for Trackline 5. 
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entire region. 

Figures 5.22 and 5.23 show the true and navigated tracks and the associated 

covariances for Trackline 5. The navigated track never differs from the true track by more 

than one pixel, and the covariance is larger than one only once. Tracking in this region is 

extremely good. 

260 

255 

1                        ,                        |                        ,                       ,                        |                        II  1 1  

245 " 

240 

1                        I                       I                        I                       I                        I                       I                       I                        i                        i 

140 160 180 200 220 240 260 280 
x position (pixels) 

300 320 340 360 

Figure 5.22. True (-) and Navigated (*) Trackline 5. 

5.3 Quantitative Analysis 

This section presents a quantitative analysis in true dimensions (meters) of the five 

tracklines given in Section 5.2. 

Figures 5.24 show the overall distance error between the true and navigated tracks, 

along with the errors in x and v for Trackline 1 (see Figures 5.1 and 5.4). The average x, y, 
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Figure 5.23. Covariances for Trackline 5. 

xx(*), yy(+), xy(o). 

and overall errors are 5.67 m, 4.14. m, and 7.82 m, respectively, for the full trackline, but 

the plots of Figures 5.24 clearly show three separate sections of navigation performance. 

These three sections correspond to the three types of terrain this trackline covers. The first 

section contains time steps 1 through 45. Average errors are 4.95 m and 7.65 m for the x 

and y directions, and 9.70 m for the overall average error. The second section is for time 

steps 46 through 80 and average errors are 0.64 m, 0.70 m, and 1.05 m for x, y, and overall 

error, respectively. The final section is for time steps 81 through 150, and the average 

errors are 8.65 m and 3.61 m for x and y, with an overall average error of 9.99 m. 

The covariance plots of Section 5.2 contain all necessary covariance information and 

are not reproduced here. The covariance values, given in these figures in units of pixel2, 

should be multiplied by 25 to obtain true covariance values in m2. For Trackline 1, average 

covariances for x, y, and xy are 39.93 m2,35.40 m2, and -0.02 m2, respectively (see Figure 
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Figure 5.24. x, y, and Overall Errors for Trackline 1. 

5.5). Segmenting the covariances as above, for Section 1, the average values for x, y, and 

xy are 67.00 m2,78.50 m2, and 1.25 m2; for Section 2,3.96 m2,3.15 m2, and 0.00 m2; and 

for Section 3,40.47 m2, 23.88 m2, and -0.85 m2. However, the covariance information is 

more useful when compared to the error at each time step. 

Figure 5.25 shows the track error normalized over the covariances of Figure 5.5. The 

overall distance error is compared to the state covariance matrix at that time step to obtain 

the value of T, which indicates the size of the uncertainty ellipsoid that corresponds to the 

overall distance error vector. For example, when T=\, an ellipsoid is drawn at 1 a, and the 
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time step 

Figure 5.25. Track Error Normalized over Covariance (7) for Trackline 1. 

endpoint of the difference vector lies on the surface of this ellipsoid. When T=2, an 

ellipsoid is drawn at 2a, and the endpoint of the difference vector lies on the surface of 

this ellipsoid. So, the value of T is the number of sigmas needed to define the ellipsoid 

whose surface contains the endpoint of the difference vector. At each time step, the actual 

deviation values are different, but for this figure the information is normalized so different 

time steps can be compared directly. 

At the start of the track, the overall distance error is large (see Figure 5.24), but so is 

the covariance (see Figure 5.5), and the performance of the system is fairly good, i.e., Tis 

small. In the second section, the errors are smaller, but so are the covariance values, and 

the performance is still good. However, when the vehicle moves into the third section of 

the terrain, the error values become large again, but the covariance has not yet grown 

sufficiently, so the normalized value is large (up to 9), indicating poor performance. This 

value does reduce as the covariance grows to better represent the accuracy expected. 
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Figure 5.26. Histogram for T, Trackline 1. 

Figure 5.26 shows a histogram of T for all of Trackline 1. The histogram indicates that 

for most of the trackline Tis small. In fact, for 84% of the track, r<3, or the error is within 

3 standard deviations of the calculated uncertainty. These results show very good 

performance but also indicate that the state covariance values are slightly smaller than they 

should be. For a perfect system, T should follow the gaussian distribution where 99% of 

the track should have T<3. 

Figures 5.27 show the overall distance error between the true and navigated tracks 

along with the errors in x and y for Trackline 2 (see Figures 5.1 and 5.7). Here, the average 

x, y, and overall errors are 5.36 m, 4.36 m, and 7.82 m, respectively. The overall average 

covariances for x, y and xy, respectively, are 42.74 m2,40.74 m2, and -2.53 m2 (see Figure 

5.8). The plots of Figures 5.27 also show three separate regions of navigation 

performance, as they should, since Trackline 2 is the reverse of Trackline 1. Here, the 

regions are separated as time steps 1 through 70,71 through 105, and 106 through 150. 

For Section 1, average errors are 8.94 m, 4.14. m, and 10.69 m for x, y, and overall, 
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time step 

Figure 5.27. x, y, and Overall Errors for Trackline 2. 

respectively. This corresponds to Section 3 of Trackline 1, which has comparable error 

values. The average covariances for x, y, zndxy, respectively, are 47.88 m2,43.81 m2, and 

-6.18 m2. For Section 2, the average errors are 0.86 m, 0.91 m, and 1.43 m for x, y, and 

overall, respectively, and again the corresponding error values for Trackline 1 are 

approximately the same. The average covariances for x, y, andxy, respectively, are 3.80 

m2, 3.07 m2, and 0.02 m2. Section 3 has average errors of 3.30 m, 6.78 m, and 8.31 m for 

x, y, and overall, respectively, and in this case the y error, and consequently the overall 

error, differs slightly from those obtained for Section 1 of Trackline 1. Here, the average 
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covariances for x, y, and xy are 65.03 m , 1.17 m , and 65.28 m . 

Figure 5.28 shows Trackline-2 error normalized over the covariances of Figure 5.8. 

Here, the navigation performance is suboptimal in the beginning as the values for T are 

larger than desired. This is consistent with Section 3 of Trackline 1 (see Figure 5.25). The 

largest values of T for this trackline occur at approximately the same locations in the map 

as the largest values of T for Trackline 1. Here, however, the largest value is 23 compared 

time step 

Figure 5.28. Track Error Normalized over Covariance (T) for Trackline 1. 

to 9 of the other trackline. The area where this occurs is the transition area between the 

steep and the gradually sloping terrains. The second section of Figure 5.28 represents the 

ridge area of the terrain, and the values of T indicate good performance, similar to Section 

2 of Trackline 1. The final section shows a slight degradation in performance, but overall 

the system operates quite successfully. 

Figure 5.29 shows a histogram of T for all of Trackline 2. The histogram shows that 

for most of this trackline, as for the previous one, T remains small. In fact, for 91% of the 
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Figure 5.29. Histogram for T, Trackline 2. 

track, T<3, which indicates better performance than Trackline 1. The only exception is the 

single outlier at T=23, as discussed above. However, as in Trackline 1, the state covariance 

values are still slightly smaller than they should be for a perfect Gaussian system. 

Figures 5.30 show the overall distance error between the true and navigated tracks, 

along with the errors in x and y for Trackline 3 (see Figures 5.9 and 5.12). The average x, 

y, and overall errors are 3.50 m, 3.23. m, and 5.12 m, respectively. The majority of this 

trackline is for the steep ridge terrain (all except the very beginning), and it is not 

necessary to segment it as for Tracklines 1 and 2. The average covariances for this track 

are 17.86 m2,14.27 m2, and -3.44 m2, for x, y, and xy, respectively (see Figure 5.13) 

Figure 5.31 displays the normalized track error for Trackline 3, and Figure 5.32 the 

corresponding histogram. The histogram is very similar to that of Trackline 2 (Figure 

5.29) in that it has isolated points at a high rvalue (28), and 90% of the track has T<3. The 

two points for which T=28 are located in different places. The first point occurs at the 

transition into the steep terrain, and the second occurs when the covariances are extremely 
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time step 

Figure 5.30. x, y, and Overall Errors for Trackline 3. 

small. Isolated points like these, although undesirable, do not result in overall poor 

performance of the system. Again, there is very good performance for this track. 

Figures 5.33 show the overall distance error between the true and navigated tracks, 

along with errors in x and y, for Trackline 4 (see Figures 5.14 and 5.17). The average x, y, 

and overall errors are 15.42 m, 4.47 m, and 16.62 m, respectively, for the full trackline. 

The average covariances are 49.85 m2,40.92 m2, and -3.65 m2, for x, y, and xy, 

respectively (see Figure 5.18). This trackline can be divided into two sections, one 

covering the gradually sloping terrain, and the other covering the ridge. The first section 
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Figure 5.31. Track Error Normalized over Covariance (T) for Trackline 3. 
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Figure 5.32. Histogram for T, Trackline 3. 
contains time steps 1 through 65, and the average x, y, and overall errors are 22.17 m, 5.40 

m, and 23.28 m, respectively. The average covariances are 69.56 nr, 55.47 m , and -5.26 

m2, for x, y, and xy, respectively. The second section contains time steps 66 through 100, 

and the average x, y, and overall errors are 2.88 m, 2.74 m, and 4.26 m. Here, the average 

covariances are 13.26 m2, 13.90 m2, and -0.65 m2, for x, y, andxv, respectively. Although 

this trackline covers general areas of the terrain that are already visited in the first three 
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Figure 5.33. x, y, and Overall Errors for Trackline 4. 

tracklines, in this case the profiles are oriented perpendicular to the profile orientation of 

the previous tracks, so very different results are possible. 

Figure 5.34, shows Trackline-4 error normalized over the covariances of Figure 5.18. 

Performance for this trackline is not as good as that of the three previous tracks. 

Undesirably large values of T are sustained for over fifteen time steps before T reaches its 

maximum value of 11 and then decreases. The reduction occurs starting at time step 50, 

and T stays small for the remainder of the track, except for a few isolated spikes that reach 

almost to 4. The first half of this trackline, where the performance is marginal, occurs in 
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Figure 5.34. Track Error Normalized over Covariance (T) for Trackline 4. 

the terrain that is much less variable than the terrain for the second half of the track (see 

Figure 5.14). The transition into the ridge occurs roughly in the middle of the track, 

approximately at time step 50, when the T values begin to decrease. 

The sub-optimal, yet acceptable, performance across this track is evident in the 

histogram of T as shown in Figure 5.35. Although there are no outliers, only 71 % of the 

15 
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Figure 5.35. Histogram for T, Trackline 4. 
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track has T<3. As can be seen in the figure, the covariances at the beginning of the track 

are smaller than they should be. 

Figures 5.36 show the overall distance error between the true and navigated tracks 
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Figure 5.36. x, y, and Overall Errors for Trackline 5. 

along with the errors in x and y for Trackline 5. This entire trackline is within the steep 

ridge, so it is not segmented. The average x, y, and overall errors are 2.24 m, 1.08 m, and 

2.75 m, respectively. The average covariances are 6.75 m2,4.39 m2, and -0.02 m2, for*, y, 

and xy, respectively. As a complete trackline, Trackline 5 has the smallest navigational 

errors; only the second sections of Tracklines 1 and 2 have smaller errors. Also, the 
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covariances are the smallest for this complete trackline. Only the second sections of 

Tracklines 1 and 2 have smaller covariances, and Section 2 of Trackline 4 has covariances 

only slightly larger 

Figure 5.37 shows the normalized track error for Trackline 5 and, Figure 5.38 the 

corresponding histogram. The two places where T remains larger than 3 for consecutive 

time steps correspond to the places where the x error is large.The maximum T value of 11 

80 90 100 

Figure 5.37. Track Error Normalized over Covariance (7) for Trackline 5. 

occurs only once, and for 89% of the track T<3, which gives performance almost as good 

as Tracklines 2 and 3 (91% and 90%, respectively). Also, 84% of Trackline 5 has 7/<2, 

which shows significantly better performance that Tracklines 1 and 4, where T<3 for 84% 

and 71%, respectively. 
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Figure 5.38. Histogram for T, Trackline 5. 

5.4 Summary 

Five tracklines across different types of terrain in deep ocean bathymetry were 

presented in this chapter, for which the results are summarized in Table 5.2 The tracks 

crossing the steep ridge with highly variable terrain show the smallest navigation errors 

(Trackline 5 and Sections 2 of Tracklines 1, 2, and 4). In these regions the errors are 

smaller than the pixel spacing of 5 m. In all these regions, the covariances are also smaller 

than the pixel spacing, i.e., less than 25 m2. The worst performances are, as expected, in 

areas of less variable terrain, with overall errors up to 23 m and covariances up to 78 m2. 

However, no navigation track ever diverged from the true track beyond the point of 

recovery. In this sense, all tracklines were very successful. 
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Table 5.2 Summary of Trackline Performance Data. 

Trackline 
x error, 

m 
y error, 

m 
overall 
error, m 

X 

covariance 

m2 

y 
covariance 

m2 

xy 
covariance 

m2 

%T<3 

1 5.67 4.14 7.82 39.93 35.40 -0.02 84 

2 5.36 4.18 7.82 42.74 40.74 -2.53 91 

3 3.50 3.23 5.12 17.86 14.27 -3.44 90 

4 15.42 4.47 16.62 49.85 40.92 -3.65 71 

5 2.24 1.08 2.75 6.75 4.39 -0.02 89 

1-1 4.95 7.65 9.70 67.00 78.50 1.25 

1-2 0.64 0.70 1.05 3.96 3.15 0.00 

1-3 8.65 3.61 9.99 40.47 23.88 -0.85 

2-1 8.94 4.14 10.69 47.88 43.81 -6.18 

2-2 0.86 0.91 1.43 3.80 3.07 0.02 

2-3 3.30 6.78 8.31 65.03 1.17 65.28 

4-1 22.17 5.40 23.28 69.56 55.47 -5.26 

4-2 2.88 2.74 4.26 13.26 13.90 -0.65 
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Chapter 6 

Conclusions 

In this thesis, I demonstrate the success of a new terrain-relative navigation algorithm 

for autonomous underwater vehicles. The approach does not require the deployment of 

acoustic beacons or other navigation aids. This means there is no need for servicing and 

maintaining any equipment other than the vehicle itself. Also, no time or effort is spent 

surveying by support vessel to establish the beacon locations or to define a local reference 

frame. Instead, terrain-relative navigation depends on a supplied digital bathymetric map 

and the ability of the vehicle to image the seafloor. These images are matched to the map 

in the local neighborhood and ranked according to the mean absolute difference. The 

algorithm functions independent of the pixel size of the supplied map, so even maps with 

coarse resolution can be used successfully. 

An intelligent, adaptive search, using a coarse-to-fine algorithm with a modified beam 

search, reduces the computational requirements at each time step. This should enable real- 

time operation in most environments. Actual computational requirements will vary for 

each time step as a function of the size of the search range, which dictates the number of 

coarse maps, and the number of matches tracked through the scale space. Validated 

measurements are weighted probabilistically as a function of both the match quality and 

the innovation using a probabilistic data association filter with amplitude information 

(PDAFAI). This means that all good matches are considered with some probability of 

being the correct match. 
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Five simulated tracklines were run across varying terrain in a deep-ocean map. As 

expected, results show more accurate navigation in areas with greater bathymetric 

variability and less accurate navigation in flatter areas with more gentle terrain contours. 

Terrains with minimal bathymetric variability, such as the abyssal plains, may not yield 

profiles with sufficient uniqueness to support accurate navigation with this approach. For 

most places in the tracklines presented, the uncertainties assigned to the navigation 

positions reflect the ability of the system to follow the true track. In no case did the system 

diverge beyond the point of recovery. 

6.1 Assumptions 

The assumptions for this research fall into two categories: operational and conceptual. 

The two operational assumptions are, as stated above, that there is a supplied digital 

bathymetric map and that the vehicle has the ability to image the seafloor. To have a 

supplied map implies that the area of interest has been visited previously. Thus, this 

terrain-relative navigation algorithm is not applicable when the terrain is unknown. In the 

simulations of Chapter 5, it is also assumed that the seafloor image is a ID string of digital 

bathymetric values with uncertainty. (The algorithm is easily adapted to handle 2D 

images.) This means that regardless of the sensor used, the ability to convert the sensed 

information into a digital bathymetric string is assumed. 

One primary conceptual assumption is that all uncertainties are zero-mean Gaussian. 

Each map point and each profile point has an associated uncertainty value. For the map, 

uncertainty values are assumed based on both the sensor used to obtain the information 

and the map-making technique. The profile uncertainties due to the sensor are also 
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assumed constant. This is not likely to be true. One would expect the data at the ends of 

each profile to maintain higher uncertainty because the slant ranges are usually larger. One 

would also expect the uncertainty to change as a function of the altitude of the vehicle. 

The zero-mean Gaussian assumption is fundamental to the PDAFAI. As stated in 

Chapter 3, with this methodology, the past is summarized by assuming the state is 

normally distributed according to the latest estimate and covariance matrix. Further, each 

new estimate with uncertainty is found using only the measurements at that time step. 

However, the most critical assumption of this research is that it is better to have an 

estimate with larger uncertainty than to choose the wrong measurement and have the 

vehicle truly believe it is somewhere that it is not. In other words, it is better to accept less 

accuracy than it is to risk being wrong. This assumption is the motivation behind using 

multiple measurements and the PDAFAI, which is a major contribution of this research. 

6.2 Contributions 

This thesis provides several major contributions to the field of navigation for 

underwater vehicles. Although it is not the first work to investigate the use of underwater 

terrain for map-based navigation, it is the first to accept multiple matches from the map- 

matching algorithm. This is the cornerstone of this research and its greatest advantage. All 

location matches in the vicinity of the expected location are considered with some 

probability of being the true location. The weighting on each is derived from the 

"goodness" of the match as well as its proximity to the expected value. Also, this research 

is the first application of probabilistic data association techniques to calculating new 

position updates using measurements derived from a map-matching algorithm. 
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A second contribution involves the computational requirements of map-matching in 

large search areas. This thesis shows that the techniques of coarse-to-fine matching and 

beam searching can be applied to map-matching navigation with only minor 

modifications. Using these techniques, computational requirements for each navigation 

update can be reduced significantly. Application of these techniques can affect overall 

algorithm performance, and the potential impacts are evaluated. 

Another contribution is in the area of handling uncertainties. Other navigation systems 

track and explicitly represent uncertainties on the vehicle location and sensed information. 

However, this research additionally allows the uncertainty of the supplied map to impact 

the system performance. No other bathymetric navigation system accounts for map 

uncertainties. Because this is integrated into the algorithm, navigation is possible even 

with highly uncertain maps or with maps with a range of uncertainties. 

This research also provides a method for the type of terrain to affect navigation 

accuracy. This occurs through the measurement noise covariance matrix. Highly variable 

terrain produces small measurement covariances and should enable highly accurate 

navigation, while flatter terrain produces higher measurement covariances and navigation 

accuracy should be reduced. At this time, quantifying the navigation accuracy based solely 

on the terrain is difficult because other parameters also affect accuracy. However, such a 

study could result in a major contribution to this field of research. 

6.3 Further Directions 

The research of this thesis can be expanded in several ways. First and foremost, the 

system could be implemented on one of several existing AUVs with the necessary sensors 
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on board. The navigation could then be tested in areas where bathymetric maps of varying 

resolution and accuracy are already available. To achieve this, a more detailed model of 

the vehicle system dynamics is necessary. Also required is the automated transformation 

of raw sensor data to a regularly spaced digital profile. These subsystems have already 

been developed by other researchers. 

One option for expanding the capabilities of the system is to add the backscatter 

strength to the PDAFAI. In areas where the bathymetric variation is not sufficient to 

support the desired navigational accuracy, the amplitude of the sonar signal could provide 

additional information. For example, a flat rocky bottom will produce a much different 

signal than flat and muddy or flat with heavy aquatic plant cover [Stewart 1988]. 

Often, when seafloor maps are generated, there are gaps in the data. This usually 

occurs because of time constraints on the sonar-mapping vessel or the navigation accuracy 

and maneuverability of the vessel when the sonar is in operation. The algorithm presented 

in this thesis can be adapted to handle data gaps in both the supplied map and the scanned 

profile. Instead of finding the MAD for all points of the profile, only the points for which a 

difference can be calculated (i.e. both a profile and a corresponding map point exist) 

contribute to the MAD value. The number of points can be different for different profile 

test locations at the same time step. Adjustments should then also be made to the 

weighting technique and the probabilities of detection and false alarm. Mathematically, 

this seems equivalent to changing the length of the profile. However, physically, biases can 

be introduced that unfairly favor matches with more or fewer points. If addressed properly, 

the solution to this problem would allow the AUV to navigate along the perimeter of the 
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map without biasing the updates toward the center of the map where the information is 

more complete. 

Along different lines, future research could center on joining the terrain-relative 

navigation system with a mapping process [Leonard; Singh; Stewart 1988; Tuohy]. If the 

mapping routine were continually active, navigation could be achieved in a dynamic 

environment. The mapping system would track the temporal bathymetric changes and 

update the stored map as necessary. One step further would be to increase the accuracy or 

resolution of the stored map as the vehicle travels within the area. This is concurrent 

navigation and mapping. 

The dilemma here is that to navigate well, a good map must be supplied, but the 

construction of a good map is dependent on accurate navigation. Most research to date has 

concentrated on the navigation and map-making capabilities separately, and two 

uncoupled processes are employed when a mission requires both. To my knowledge, the 

issues of concurrent localization and mapping in an underwater environment, including 

the bootstrapping problem, have not yet been addressed. 
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